Remarks on the well-posedness of Camassa-Holm type equations in Besov spaces

被引:69
|
作者
Li, Jinlu [1 ]
Yin, Zhaoyang [1 ,2 ]
机构
[1] Sun Yat Sen Univ, Dept Math, Guangzhou 510275, Guangdong, Peoples R China
[2] Macau Univ Sci & Technol, Fac Informat Technol, Macau, Peoples R China
关键词
Camassa-Holm type equations; Littlewood-Paley theory; The continuity of the solution map; Nonhomogeneous Besov spaces; BLOW-UP PHENOMENA; GLOBAL WEAK SOLUTIONS; SHALLOW-WATER EQUATION; CAUCHY-PROBLEM; INTEGRABLE EQUATION; WAVE SOLUTIONS; SHOCK-WAVES; EXISTENCE; BREAKING; TRAJECTORIES;
D O I
10.1016/j.jde.2016.08.031
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we prove the solution map of the Cauchy problem of Camassa-Holm type equations depends continuously on the initial data in nonhomogeneous Besov spaces in the sense of Hadamard by using the Littlewood-Paley theory and the method introduced by Kato [37] and Danchin [21]. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:6125 / 6143
页数:19
相关论文
共 50 条