Remarks on the well-posedness of Camassa-Holm type equations in Besov spaces

被引:69
|
作者
Li, Jinlu [1 ]
Yin, Zhaoyang [1 ,2 ]
机构
[1] Sun Yat Sen Univ, Dept Math, Guangzhou 510275, Guangdong, Peoples R China
[2] Macau Univ Sci & Technol, Fac Informat Technol, Macau, Peoples R China
关键词
Camassa-Holm type equations; Littlewood-Paley theory; The continuity of the solution map; Nonhomogeneous Besov spaces; BLOW-UP PHENOMENA; GLOBAL WEAK SOLUTIONS; SHALLOW-WATER EQUATION; CAUCHY-PROBLEM; INTEGRABLE EQUATION; WAVE SOLUTIONS; SHOCK-WAVES; EXISTENCE; BREAKING; TRAJECTORIES;
D O I
10.1016/j.jde.2016.08.031
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we prove the solution map of the Cauchy problem of Camassa-Holm type equations depends continuously on the initial data in nonhomogeneous Besov spaces in the sense of Hadamard by using the Littlewood-Paley theory and the method introduced by Kato [37] and Danchin [21]. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:6125 / 6143
页数:19
相关论文
共 50 条
  • [1] Well-posedness of the modified Camassa-Holm equation in Besov spaces
    Tang, Hao
    Liu, Zhengrong
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2015, 66 (04): : 1559 - 1580
  • [2] Blow-up phenomena and local well-posedness for a generalized Camassa-Holm equation in the critical Besov space
    Tu, Xi
    Yin, Zhaoyang
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2015, 128 : 1 - 19
  • [3] Ill-posedness for the Camassa-Holm and related equations in Besov spaces
    Li, Jinlu
    Yu, Yanghai
    Zhu, Weipeng
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 306 : 403 - 417
  • [4] Blow-up phenomena and local well-posedness for a generalized Camassa-Holm equation in the critical Besov space
    Tu, Xi
    Yin, Zhaoyang
    MONATSHEFTE FUR MATHEMATIK, 2020, 191 (04): : 801 - 829
  • [5] Well-posedness of modified Camassa-Holm equations
    McLachlan, Robert
    Zhang, Xingyou
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2009, 246 (08) : 3241 - 3259
  • [6] LOCAL WELL-POSEDNESS AND BLOW-UP PHENOMENA FOR A GENERALIZED CAMASSA-HOLM EQUATION WITH PEAKON SOLUTIONS
    Tu, Xi
    Yin, Zhaoyang
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2016, 36 (05) : 2781 - 2801
  • [7] Sharp ill-posedness for the generalized Camassa-Holm equation in Besov spaces
    Li, Jinlu
    Yu, Yanghai
    Zhu, Weipeng
    JOURNAL OF EVOLUTION EQUATIONS, 2022, 22 (01)
  • [8] Energy conservation and well-posedness of the Camassa-Holm equation in Sobolev spaces
    Guo, Yingying
    Ye, Weikui
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2023, 74 (05):
  • [9] WELL-POSEDNESS AND BLOW-UP PHENOMENA FOR A GENERALIZED CAMASSA-HOLM EQUATION
    Li, Jinlu
    Yin, Zhaoyang
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2016, 36 (10) : 5493 - 5508
  • [10] Well-posedness of higher-order Camassa-Holm equations
    Coclite, G. M.
    Holden, H.
    Kadsen, K. H.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2009, 246 (03) : 929 - 963