Remarks on the well-posedness of Camassa-Holm type equations in Besov spaces

被引:69
|
作者
Li, Jinlu [1 ]
Yin, Zhaoyang [1 ,2 ]
机构
[1] Sun Yat Sen Univ, Dept Math, Guangzhou 510275, Guangdong, Peoples R China
[2] Macau Univ Sci & Technol, Fac Informat Technol, Macau, Peoples R China
关键词
Camassa-Holm type equations; Littlewood-Paley theory; The continuity of the solution map; Nonhomogeneous Besov spaces; BLOW-UP PHENOMENA; GLOBAL WEAK SOLUTIONS; SHALLOW-WATER EQUATION; CAUCHY-PROBLEM; INTEGRABLE EQUATION; WAVE SOLUTIONS; SHOCK-WAVES; EXISTENCE; BREAKING; TRAJECTORIES;
D O I
10.1016/j.jde.2016.08.031
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we prove the solution map of the Cauchy problem of Camassa-Holm type equations depends continuously on the initial data in nonhomogeneous Besov spaces in the sense of Hadamard by using the Littlewood-Paley theory and the method introduced by Kato [37] and Danchin [21]. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:6125 / 6143
页数:19
相关论文
共 50 条
  • [1] Well-posedness of the modified Camassa-Holm equation in Besov spaces
    Tang, Hao
    Liu, Zhengrong
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2015, 66 (04): : 1559 - 1580
  • [2] Well-posedness of modified Camassa-Holm equations
    McLachlan, Robert
    Zhang, Xingyou
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2009, 246 (08) : 3241 - 3259
  • [3] Well-posedness of the modified Camassa–Holm equation in Besov spaces
    Hao Tang
    Zhengrong Liu
    Zeitschrift für angewandte Mathematik und Physik, 2015, 66 : 1559 - 1580
  • [4] Ill-posedness for the Camassa-Holm and related equations in Besov spaces
    Li, Jinlu
    Yu, Yanghai
    Zhu, Weipeng
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 306 : 403 - 417
  • [5] Well-posedness of higher-order Camassa-Holm equations
    Coclite, G. M.
    Holden, H.
    Kadsen, K. H.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2009, 246 (03) : 929 - 963
  • [6] A note on well-posedness for Camassa-Holm equation
    Danchin, R
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2003, 192 (02) : 429 - 444
  • [7] Well-posedness for stochastic Camassa-Holm equation
    Chen, Yong
    Gao, Hongjun
    Guo, Boling
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 253 (08) : 2353 - 2379
  • [8] On the well-posedness of the Camassa-Holm equation in the Triebel-Lizorkin spaces
    Yang, Minsuk
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 430 (01) : 20 - 31
  • [9] Energy conservation and well-posedness of the Camassa-Holm equation in Sobolev spaces
    Guo, Yingying
    Ye, Weikui
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2023, 74 (05):
  • [10] Local Well-Posedness of a Coupled Camassa-Holm System in Critical Spaces
    Liu, Xingxing
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2015, 34 (01): : 43 - 59