Topological invariants and interacting one-dimensional fermionic systems

被引:101
作者
Manmana, Salvatore R. [1 ,2 ,3 ]
Essin, Andrew M. [1 ]
Noack, Reinhard M. [4 ]
Gurarie, Victor [1 ]
机构
[1] Univ Colorado, Dept Phys, Boulder, CO 80309 USA
[2] Univ Colorado, JILA, Boulder, CO 80309 USA
[3] NIST, Boulder, CO 80309 USA
[4] Univ Marburg, Fachbereich Phys, D-35032 Marburg, Germany
来源
PHYSICAL REVIEW B | 2012年 / 86卷 / 20期
基金
美国国家科学基金会;
关键词
QUANTUM RENORMALIZATION-GROUPS; QUANTIZED HALL CONDUCTANCE; TIME EVOLUTION; INSULATORS; TRANSITION; SOLITONS; STATES;
D O I
10.1103/PhysRevB.86.205119
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We study one-dimensional, interacting, gapped fermionic systems described by variants of the Peierls-Hubbard model, and we characterize their phases via a topological invariant constructed out of their Green's functions. We demonstrate that the existence of topologically protected, zero-energy states at the boundaries of these systems can be tied to the value of the topological invariant, just like when working with the conventional, noninteracting topological insulators. We use a combination of analytical methods and the numerical density matrix renormalization group method to calculate the values of the topological invariant throughout the phase diagrams of these systems, thus deducing when topologically protected boundary states are present. We are also able to study topological states in spin systems because, deep in the Mott insulating regime, these fermionic systems reduce to spin chains. In this way, we associate the zero-energy states at the end of an antiferromagnetic spin-1 Heisenberg chain with a topological invariant equal to 2.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Unveiling hidden topological phases of a one-dimensional Hadamard quantum walk
    Obuse, Hideaki
    Asboth, Janos K.
    Nishimura, Yuki
    Kawakami, Norio
    PHYSICAL REVIEW B, 2015, 92 (04):
  • [42] Finite-temperature effects on interacting bosonic one-dimensional systems in disordered lattices
    Gori, Lorenzo
    Barthel, Thomas
    Kumar, Avinash
    Lucioni, Eleonora
    Tanzi, Luca
    Inguscio, Massimo
    Modugno, Giovanni
    Giamarchi, Thierry
    D'Errico, Chiara
    Roux, Guillaume
    PHYSICAL REVIEW A, 2016, 93 (03)
  • [43] Conductivity in a disordered one-dimensional system of interacting fermions
    Barisic, O. S.
    Prelovsek, P.
    PHYSICAL REVIEW B, 2010, 82 (16):
  • [44] Interacting fermionic topological insulators/superconductors in three dimensions
    Wang, Chong
    Senthil, T.
    PHYSICAL REVIEW B, 2014, 89 (19)
  • [45] Finite-size effects on topological interface states in one-dimensional scattering systems
    Kalozoumis, P. A.
    Theocharis, G.
    Achilleos, V.
    Felix, S.
    Richoux, O.
    Pagneux, V.
    PHYSICAL REVIEW A, 2018, 98 (02)
  • [46] Universal fidelity near quantum and topological phase transitions in finite one-dimensional systems
    Konig, E. J.
    Levchenko, A.
    Sedlmayr, N.
    PHYSICAL REVIEW B, 2016, 93 (23)
  • [47] The Topological Classification of One-Dimensional Symmetric Quantum Walks
    Cedzich, C.
    Geib, T.
    Grunbaum, F. A.
    Stahl, C.
    Velazquez, L.
    Werner, A. H.
    Werner, R. F.
    ANNALES HENRI POINCARE, 2018, 19 (02): : 325 - 383
  • [48] Topological classification of one-dimensional chiral symmetric interfaces
    Mullineauxsanders, Harry
    Braunecker, Bernd
    PHYSICAL REVIEW B, 2024, 110 (24)
  • [49] Interaction induced topological protection in one-dimensional conductors
    Kainaris, Nikolaos
    Santos, Raul A.
    Gutman, D. B.
    Carr, Sam T.
    FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2017, 65 (6-8):
  • [50] Haldane phase in one-dimensional topological Kondo insulators
    Mezio, Alejandro
    Lobos, Alejandro M.
    Dobry, Ariel O.
    Gazza, Claudio J.
    PHYSICAL REVIEW B, 2015, 92 (20)