Topological invariants and interacting one-dimensional fermionic systems

被引:100
|
作者
Manmana, Salvatore R. [1 ,2 ,3 ]
Essin, Andrew M. [1 ]
Noack, Reinhard M. [4 ]
Gurarie, Victor [1 ]
机构
[1] Univ Colorado, Dept Phys, Boulder, CO 80309 USA
[2] Univ Colorado, JILA, Boulder, CO 80309 USA
[3] NIST, Boulder, CO 80309 USA
[4] Univ Marburg, Fachbereich Phys, D-35032 Marburg, Germany
来源
PHYSICAL REVIEW B | 2012年 / 86卷 / 20期
基金
美国国家科学基金会;
关键词
QUANTUM RENORMALIZATION-GROUPS; QUANTIZED HALL CONDUCTANCE; TIME EVOLUTION; INSULATORS; TRANSITION; SOLITONS; STATES;
D O I
10.1103/PhysRevB.86.205119
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We study one-dimensional, interacting, gapped fermionic systems described by variants of the Peierls-Hubbard model, and we characterize their phases via a topological invariant constructed out of their Green's functions. We demonstrate that the existence of topologically protected, zero-energy states at the boundaries of these systems can be tied to the value of the topological invariant, just like when working with the conventional, noninteracting topological insulators. We use a combination of analytical methods and the numerical density matrix renormalization group method to calculate the values of the topological invariant throughout the phase diagrams of these systems, thus deducing when topologically protected boundary states are present. We are also able to study topological states in spin systems because, deep in the Mott insulating regime, these fermionic systems reduce to spin chains. In this way, we associate the zero-energy states at the end of an antiferromagnetic spin-1 Heisenberg chain with a topological invariant equal to 2.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Topological characterization of one-dimensional open fermionic systems
    Zhang, Da-Jian
    Gong, Jiangbin
    PHYSICAL REVIEW A, 2018, 98 (05)
  • [2] Interacting One-Dimensional Fermionic Symmetry-Protected Topological Phases
    Tang, Evelyn
    Wen, Xiao-Gang
    PHYSICAL REVIEW LETTERS, 2012, 109 (09)
  • [3] Entanglement topological invariants for one-dimensional topological superconductors
    Fromholz, P.
    Magnifico, G.
    Vitale, V.
    Mendes-Santos, T.
    Dalmonte, M.
    PHYSICAL REVIEW B, 2020, 101 (08)
  • [4] One-dimensional interacting topological insulator
    Guo, Huaiming
    Shen, Shun-Qing
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2013, 63 (03) : 387 - 389
  • [5] One-dimensional interacting topological insulator
    Huaiming Guo
    Shun-Qing Shen
    Journal of the Korean Physical Society, 2013, 63 : 387 - 389
  • [6] TOPOLOGICAL INVARIANTS FOR ONE-DIMENSIONAL DIRAC OPERATORS
    HIRAYAMA, M
    PHYSICS LETTERS B, 1985, 156 (3-4) : 225 - 230
  • [7] Universal Composite Boson Formation in Strongly Interacting One-Dimensional Fermionic Systems
    Sabater, Francesc
    Rojo-Francas, Abel
    Astrakharchik, Grigori E.
    Julia-Diaz, Bruno
    PHYSICAL REVIEW LETTERS, 2024, 132 (19)
  • [8] Topological invariants for phase transition points of one-dimensional Z2 topological systems
    Li, Linhu
    Yang, Chao
    Chen, Shu
    EUROPEAN PHYSICAL JOURNAL B, 2016, 89 (09):
  • [9] Topological invariants for phase transition points of one-dimensional Z2 topological systems
    Linhu Li
    Chao Yang
    Shu Chen
    The European Physical Journal B, 2016, 89
  • [10] Boltzmann-type approach to transport in weakly interacting one-dimensional fermionic systems
    Bartsch, Christian
    Gemmer, Jochen
    PHYSICAL REVIEW E, 2012, 85 (04):