Intercalated Si/C films as the anode for Li-ion batteries with near theoretical stable capacity prepared by dual plasma deposition

被引:41
|
作者
Li, Wei [1 ]
Yang, Rong [1 ]
Wang, Xiaojuan [1 ]
Wang, Teng [1 ]
Zheng, Jie [1 ]
Li, Xingguo [1 ]
机构
[1] Peking Univ, Coll Chem & Mol Engn, State Key Lab Rare Earth Mat Chem & Applicat, BNLMS, Beijing 100871, Peoples R China
关键词
Acetylene plasma; Magnetron sputtering; Carbon/silicon intercalated structure; Lithium ion batteries; High reversible capacity; RECHARGEABLE BATTERIES; NANO-SILICON; CYCLE LIFE; COMPOSITE; ELECTRODES; PERFORMANCE; BINDER; NANOWIRES; ALLOY;
D O I
10.1016/j.jpowsour.2012.08.042
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Si has a very high theoretical capacity of 4200 inAh g(-1) as the anode materials for lithium ion batteries, which is near ten times higher than that of the current commercial graphite anode. However, it suffers from severe volume expansion/contraction during the charge/discharge processes, which is the main obstacle for its application. In this work, we prepare Si/C composite anodes with an intercalated Si/C multilayer structure by alternately depositing C and Si by plasma decomposition of C2H2 and magnetron sputtering of a Si target, respectively. Near theoretical capacity can be achieved (about 4000 mAh g(-1)) for more than 100 cycles for thin Si layers, which is attributed to the buffer effect of the carbon layers. This structure is also scalable up to multiple Si/C layers. A critical thickness of 20 nm is found for the silicon layer, below which the near theoretical capacity can be stably maintained. This critical thickness may shed light on future designs of nanostructured silicon anode with high capacity and stability for lithium ion batteries. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:242 / 246
页数:5
相关论文
共 50 条
  • [41] High capacity TiO2 anode materials for Li-ion batteries
    Guler, Mehmet Oguz
    Cevher, Ozgur
    Cetinkaya, Tugrul
    Tocoglu, Ubeyd
    Akbulut, Hatem
    ENERGY CONVERSION AND MANAGEMENT, 2013, 72 : 111 - 116
  • [42] Predicting Capacity Fade in Silicon Anode-Based Li-Ion Batteries
    Dasari, Harika
    Eisenbraun, Eric
    ENERGIES, 2021, 14 (05)
  • [43] Mg2Si anode for Li-ion batteries: Linking structural change to fast capacity fading
    Ma, Ruijun
    Liu, Yongfeng
    Yang, Yaxiong
    Gao, Mingxia
    Pan, Hongge
    APPLIED PHYSICS LETTERS, 2014, 105 (21)
  • [44] Mesoporous Si and Multi-Layered Si/C Films by Pulsed Laser Deposition as Li-Ion Microbattery Anodes
    Garino, Nadia
    Biserni, Erika
    Bassi, Andrea Li
    Bruno, Paola
    Gerbaldi, Claudio
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2015, 162 (09) : A1816 - A1822
  • [45] Scalable synthesis of nano-Si embedded in porous C and its enhanced performance as anode of Li-ion batteries
    Zhuang, Xiangyang
    Zhang, Yao
    He, Lingxiao
    Zhu, Yunfeng
    Tian, Qifeng
    Guo, Xinli
    Chen, Jian
    Li, Liquan
    Wang, Quan
    Song, Guanzhou
    Yan, Xiaoxiao
    ELECTROCHIMICA ACTA, 2017, 249 : 166 - 172
  • [46] Determination of Si/graphite anode composition for new generation Li-ion batteries: a case study
    Kalafat, Ilknur
    Yuca, Neslihan
    TURKISH JOURNAL OF CHEMISTRY, 2022, 46 (06) : 2112 - +
  • [47] Ti-Fe-Si/C composites as anode materials for high energy li-ion batteries
    Nuhu, Bage Alhamdu
    Adun, Humphrey
    Bamisile, Olusola
    Mukhtar, Mustapha
    ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2022, 44 (02) : 5154 - 5171
  • [48] Porous CoO/C polyhedra as anode material for Li-ion batteries
    Yuan, Weiwei
    Zhang, Jun
    Xie, Dong
    Dong, Zimin
    Su, Qingmei
    Du, Gaohui
    ELECTROCHIMICA ACTA, 2013, 108 : 506 - 511
  • [49] Highly Ordered Mesoporous Si/C Nanocomposite as High Performance Anode Material for Li-ion Batteries
    Tang, Yanping
    Yuan, Sha
    Guo, Yuzhong
    Huang, Ruian
    Wang, Jianhua
    Yang, Bin
    Dai, Yongnian
    ELECTROCHIMICA ACTA, 2016, 200 : 182 - 188
  • [50] Contribution of TiN to the enhanced cycling stability of Si@TiN/C composites as anode materials for Li-ion batteries
    Huang, Wenli
    Zhao, Shuo
    Wang, Jin
    Xian, Xiaochao
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2022, 906