Challenges and opportunities with CRISPR activation in bacteria for data-driven metabolic engineering

被引:36
作者
Fontana, Jason [1 ,2 ]
Sparkman-Yager, David [1 ,2 ]
Zalatan, Jesse G. [3 ]
Carothers, James M. [4 ]
机构
[1] Univ Washington, Mol Engn & Sci Inst, Seattle, WA 98195 USA
[2] Univ Washington, Ctr Synthet Biol, Seattle, WA 98195 USA
[3] Univ Washington, Dept Chem, Seattle, WA 98195 USA
[4] Univ Washington, Dept Chem Engn, Seattle, WA 98195 USA
基金
美国国家科学基金会;
关键词
GENE; IMPROVEMENT; REPRESSION; CAS9; RNAS;
D O I
10.1016/j.copbio.2020.04.005
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Creating CRISPR gene activation (CRISPRa) technologies in industrially promising bacteria could be transformative for accelerating data-driven metabolic engineering and strain design. CRISPRa has been widely used in eukaryotes, but applications in bacterial systems have remained limited. Recent work shows that multiple features of bacterial promoters impose stringent requirements on CRISPRa-mediated gene activation. However, by systematically defining rules for effective bacterial CRISPRa sites and developing new approaches for encoding complex functions in engineered guide RNAs, there are now clear routes to generalize synthetic gene regulation in bacteria. When combined with multi-omics data collection and machine learning, the full development of bacterial CRISPRa will dramatically improve the ability to rapidly engineer bacteria for bioproduction through accelerated design-build-test-learn cycles.
引用
收藏
页码:190 / 198
页数:9
相关论文
共 58 条
[1]   RNA-aptamers-in-droplets (RAPID) high-throughput screening for secretory phenotypes [J].
Abatemarco, Joseph ;
Sarhan, Maen F. ;
Wagner, James M. ;
Lin, Jyun-Liang ;
Liu, Leqian ;
Hassouneh, Wafa ;
Yuan, Shuo-Fu ;
Alper, Hal S. ;
Abate, Adam R. .
NATURE COMMUNICATIONS, 2017, 8
[2]   Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system [J].
Bikard, David ;
Jiang, Wenyan ;
Samai, Poulami ;
Hochschild, Ann ;
Zhang, Feng ;
Marraffini, Luciano A. .
NUCLEIC ACIDS RESEARCH, 2013, 41 (15) :7429-7437
[3]   Guide RNA Functional Modules Direct Cas9 Activity and Orthogonality [J].
Briner, Alexandra E. ;
Donohoue, Paul D. ;
Gomaa, Ahmed A. ;
Selle, Kurt ;
Slorach, Euan M. ;
Nye, Christopher H. ;
Haurwitz, Rachel E. ;
Beisel, Chase L. ;
May, Andrew P. ;
Barrangou, Rodolphe .
MOLECULAR CELL, 2014, 56 (02) :333-339
[4]   Characterizing Strain Variation in Engineered E.coli Using a Multi-Omics-Based Workflow [J].
Brunk, Elizabeth ;
George, Kevin W. ;
Alonso-Gutierrez, Jorge ;
Thompson, Mitchell ;
Baidoo, Edward ;
Wang, George ;
Petzold, Christopher J. ;
McCloskey, Douglas ;
Monk, Jonathan ;
Yang, Laurence ;
O'Brien, Edward J. ;
Batth, Tanveer S. ;
Martin, Hector Garcia ;
Feist, Adam ;
Adams, Paul D. ;
Keasling, Jay D. ;
Palsson, Bernhard O. ;
Lee, Taek Soon .
CELL SYSTEMS, 2016, 2 (05) :335-346
[5]   An automated Design-Build-Test-Learn pipeline for enhanced microbial production of fine chemicals [J].
Carbonell, Pablo ;
Jervis, Adrian J. ;
Robinson, Christopher J. ;
Yan, Cunyu ;
Dunstan, Mark ;
Swainston, Neil ;
Vinaixa, Maria ;
Hollywood, Katherine A. ;
Currin, Andrew ;
Rattray, Nicholas J. W. ;
Taylor, Sandra ;
Spiess, Reynard ;
Sung, Rehana ;
Williams, Alan R. ;
Fellows, Donal ;
Stanford, Natalie J. ;
Mulherin, Paul ;
Le Feuvre, Rosalind ;
Barran, Perdita ;
Goodacre, Royston ;
Turner, Nicholas J. ;
Goble, Carole ;
Chen, George Guoqiang ;
Kell, Douglas B. ;
Micklefield, Jason ;
Breitling, Rainer ;
Takano, Eriko ;
Faulon, Jean-Loup ;
Scrutton, Nigel S. .
COMMUNICATIONS BIOLOGY, 2018, 1
[6]  
Chatterjee P., 2019, bioRxiv, V620351, DOI DOI 10.1101/620351
[7]   Design Principles for Ligand-Sensing, Conformation-Switching Ribozymes [J].
Chen, Xi ;
Ellington, Andrew D. .
PLOS COMPUTATIONAL BIOLOGY, 2009, 5 (12)
[8]   Casilio: a versatile CRISPR-Cas9-Pumilio hybrid for gene regulation and genomic labeling [J].
Cheng, Albert W. ;
Jillette, Nathaniel ;
Lee, Phoebe ;
Plaskon, Dylan ;
Fujiwara, Yasuhiro ;
Wang, Wenbo ;
Taghbalout, Aziz ;
Wang, Haoyi .
CELL RESEARCH, 2016, 26 (02) :254-257
[9]   Systems Metabolic Engineering Strategies: Integrating Systems and Synthetic Biology with Metabolic Engineering [J].
Choi, Kyeong Rok ;
Jang, Woo Dae ;
Yang, Dongsoo ;
Cho, Jae Sung ;
Park, Dahyeon ;
Lee, Sang Yup .
TRENDS IN BIOTECHNOLOGY, 2019, 37 (08) :817-837
[10]   A machine learning approach to predict metabolic pathway dynamics from time-series multiomics data [J].
Costello, Zak ;
Garcia Martin, Hector .
NPJ SYSTEMS BIOLOGY AND APPLICATIONS, 2018, 4