A combinatorial spanning tree model for knot Floer homology

被引:28
作者
Baldwin, John A. [1 ]
Levine, Adam Simon [2 ]
机构
[1] Boston Coll, Dept Math, Chestnut Hill, MA 02467 USA
[2] Brandeis Univ, Dept Math, Waltham, MA 02453 USA
基金
美国国家科学基金会;
关键词
Knot Floer homology; Heegaard Floer homology; Khovanov homology; Spanning tree; Exact triangle; EMBEDDED CONTACT HOMOLOGY; HOLOMORPHIC DISKS; KHOVANOV HOMOLOGY; INVARIANTS;
D O I
10.1016/j.aim.2012.06.006
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We iterate Manolescu's unoriented skein exact triangle in knot Hoer. homology with coefficients in the field of rational functions over Z/2Z. The result is a spectral sequence which converges to a stabilized version of A-graded knot Floer homology. The (E-2 . d(2)) page of this spectral sequence is an algorithmically computable chain complex expressed in terms of spanning trees, and we show that there are no higher differentials. This Oyes the first combinatorial spanning tree model for knot Floer homology. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:1886 / 1939
页数:54
相关论文
共 56 条
[31]   Knot Floer homology detects fibred knots [J].
Ni, Yi .
INVENTIONES MATHEMATICAE, 2007, 170 (03) :577-608
[32]  
Ni Yi, 2010, ARXIV10102808
[33]   On the Heegaard Floer homology of branched double-covers [J].
Ozsváth, P ;
Szabó, Z .
ADVANCES IN MATHEMATICS, 2005, 194 (01) :1-33
[34]   Holomorphic disks and topological invariants for closed three-manifolds [J].
Ozsváth, P ;
Szabó, Z .
ANNALS OF MATHEMATICS, 2004, 159 (03) :1027-1158
[35]   Holomorphic disks and knot invariants [J].
Ozsváth, P ;
Szabó, Z .
ADVANCES IN MATHEMATICS, 2004, 186 (01) :58-116
[36]   Knot Floer homology, genus bounds, and mutation [J].
Ozsváth, P ;
Szabó, Z .
TOPOLOGY AND ITS APPLICATIONS, 2004, 141 (1-3) :59-85
[37]   Holomorphic disks and genus bounds [J].
Ozsváth, P ;
Szabó, Z .
GEOMETRY & TOPOLOGY, 2004, 8 :311-334
[38]   Knot Floer homology and the four-ball genus [J].
Ozsváth, P ;
Szabó, Z .
GEOMETRY & TOPOLOGY, 2003, 7 :615-639
[39]   Heegaard Floer homology and alternating knots [J].
Ozsváth, P ;
Szabó, Z .
GEOMETRY & TOPOLOGY, 2003, 7 :225-254
[40]   Holomorphic triangles and invariants for smooth four-manifolds [J].
Ozsvath, Peter ;
Szabo, Zoltan .
ADVANCES IN MATHEMATICS, 2006, 202 (02) :326-400