Genomic Selection in Wheat Breeding using Genotyping-by-Sequencing

被引:829
|
作者
Poland, Jesse [1 ,2 ]
Endelman, Jeffrey [3 ]
Dawson, Julie [4 ]
Rutkoski, Jessica [4 ]
Wu, Shuangye [2 ]
Manes, Yann [5 ]
Dreisigacker, Susanne [5 ]
Crossa, Jose [5 ]
Sanchez-Villeda, Hector [5 ]
Sorrells, Mark [4 ]
Jannink, Jean-Luc [3 ]
机构
[1] Kansas State Univ, USDA ARS, Manhattan, KS 66506 USA
[2] Kansas State Univ, Dep Agron, Manhattan, KS 66506 USA
[3] Cornell Univ, USDA ARS, RW Holley Ctr, Ithaca, NY 14853 USA
[4] Cornell Univ, Dep Plant Breeding & Genet, Ithaca, NY 14853 USA
[5] Int Maize & Wheat Improvement Ctr CIMMYT, Mexico City 06600, DF, Mexico
基金
比尔及梅琳达.盖茨基金会; 美国农业部;
关键词
ARRAYS TECHNOLOGY DART; QUANTITATIVE TRAITS; GENETIC VALUES; PREDICTION; REGRESSION; PEDIGREE;
D O I
10.3835/plantgenome2012.06.0006
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Genomic selection (GS) uses genomewide molecular markers to predict breeding values and make selections of individuals or breeding lines prior to phenotyping. Here we show that genotyping-by-sequencing (GBS) can be used for de novo genotyping of breeding panels and to develop accurate GS models, even for the large, complex, and polyploid wheat (Triticum aestivum L.) genome. With GBS we discovered 41,371 single nucleotide polymorphisms (SNPs) in a set of 254 advanced breeding lines from CIMMYT's semiarid wheat breeding program. Four different methods were evaluated for imputing missing marker scores in this set of unmapped markers, including random forest regression and a newly developed multivariate-normal expectation-maximization algorithm, which gave more accurate imputation than heterozygous or mean imputation at the marker level, although no significant differences were observed in the accuracy of genomic-estimated breeding values (GEBVs) among imputation methods. Genomic-estimated breeding value prediction accuracies with GBS were 0.28 to 0.45 for grain yield, an improvement of 0.1 to 0.2 over an established marker platform for wheat. Genotyping-by-sequencing combines marker discovery and genotyping of large populations, making it an excellent marker platform for breeding applications even in the absence of a reference genome sequence or previous polymorphism discovery. In addition, the flexibility and low cost of GBS make this an ideal approach for genomics-assisted breeding.
引用
收藏
页码:103 / 113
页数:11
相关论文
共 50 条
  • [41] Genomic Selection in Preliminary Yield Trials in a Winter Wheat Breeding Program
    Belamkar, Vikas
    Guttieri, Mary J.
    Hussain, Waseem
    Jarquin, Diego
    El-basyoni, Ibrahim
    Poland, Jesse
    Lorenz, Aaron J.
    Baenziger, P. Stephen
    G3-GENES GENOMES GENETICS, 2018, 8 (08): : 2735 - 2747
  • [42] Optimizing imputation of marker data from genotyping-by-sequencing (GBS) for genomic selection in non-model species: Rubber tree (Hevea brasiliensis) as a case study
    Munyengwa, Norman
    Le Guen, Vincent
    Bille, Hermine Ngalle
    Souza, Livia M.
    Clement-Demange, Andre
    Mournet, Pierre
    Masson, Aurelien
    Soumahoro, Mouman
    Kouassi, Daouda
    Cros, David
    GENOMICS, 2021, 113 (02) : 655 - 668
  • [43] Prospects for Genomic Selection in Cassava Breeding
    Wolfe, Marnin D.
    Del Carpio, Dunia Pino
    Alabi, Olumide
    Ezenwaka, Lydia C.
    Ikeogu, Ugochukwu N.
    Kayondo, Ismail S.
    Lozano, Roberto
    Okeke, Uche G.
    Ozimati, Alfred A.
    Williams, Esuma
    Egesi, Chiedozie
    Kawuki, Robert S.
    Kulakow, Peter
    Rabbi, Ismail Y.
    Jannink, Jean-Luc
    PLANT GENOME, 2017, 10 (03)
  • [44] Genomic Selection for Any Dairy Breeding Program via Optimized Investment in Phenotyping and Genotyping
    Obsteter, Jana
    Jenko, Janez
    Gorjanc, Gregor
    FRONTIERS IN GENETICS, 2021, 12
  • [45] Increased Genomic Prediction Accuracy in Wheat Breeding Through Spatial Adjustment of Field Trial Data
    Lado, Bettina
    Matus, Ivan
    Rodriguez, Alejandra
    Inostroza, Luis
    Poland, Jesse
    Belzile, Francois
    del Pozo, Alejandro
    Quincke, Martin
    Castro, Marina
    von Zitzewitz, Jarislav
    G3-GENES GENOMES GENETICS, 2013, 3 (12): : 2105 - 2114
  • [46] Genomic Selection of Forage Quality Traits in Winter Wheat
    Maulana, Frank
    Kim, Ki-Seung
    Anderson, Joshua D.
    Sorrells, Mark E.
    Butler, Twain J.
    Liu, Shuyu
    Baenziger, P. Stephen
    Byrne, Patrick F.
    Ma, Xue-Feng
    CROP SCIENCE, 2019, 59 (06) : 2473 - 2483
  • [47] Accuracy of genomic selection in European maize elite breeding populations
    Zhao, Yusheng
    Gowda, Manje
    Liu, Wenxin
    Wuerschum, Tobias
    Maurer, Hans P.
    Longin, Friedrich H.
    Ranc, Nicolas
    Reif, Jochen C.
    THEORETICAL AND APPLIED GENETICS, 2012, 124 (04) : 769 - 776
  • [48] A Comparison of the Adoption of Genomic Selection Across Different Breeding Institutions
    Gholami, Mahmood
    Wimmer, Valentin
    Sansaloni, Carolina
    Petroli, Cesar
    Hearne, Sarah J.
    Covarrubias-Pazaran, Giovanny
    Rensing, Stefan
    Heise, Johannes
    Perez-Rodriguez, Paulino
    Dreisigacker, Susanne
    Crossa, Jose
    Martini, Johannes W. R.
    FRONTIERS IN PLANT SCIENCE, 2021, 12
  • [49] Response to Early Generation Genomic Selection for Yield in Wheat
    Bonnett, David
    Li, Yongle
    Crossa, Jose
    Dreisigacker, Susanne
    Basnet, Bhoja
    Perez-Rodriguez, Paulino
    Alvarado, G.
    Jannink, J. L.
    Poland, Jesse
    Sorrells, Mark
    FRONTIERS IN PLANT SCIENCE, 2022, 12
  • [50] Strategies for Selecting Crosses Using Genomic Prediction in Two Wheat Breeding Programs
    Loda, Bettina
    Battenfield, Sarah
    Guzman, Carlos
    Quincke, Martin
    Singh, Ravi P.
    Dreisigacker, Susanne
    Pena, R. Javier
    Fritz, Allan
    Silva, Paula
    Poland, Jesse
    Gutierrez, Lucia
    PLANT GENOME, 2017, 10 (02):