Genomic Selection in Wheat Breeding using Genotyping-by-Sequencing

被引:829
|
作者
Poland, Jesse [1 ,2 ]
Endelman, Jeffrey [3 ]
Dawson, Julie [4 ]
Rutkoski, Jessica [4 ]
Wu, Shuangye [2 ]
Manes, Yann [5 ]
Dreisigacker, Susanne [5 ]
Crossa, Jose [5 ]
Sanchez-Villeda, Hector [5 ]
Sorrells, Mark [4 ]
Jannink, Jean-Luc [3 ]
机构
[1] Kansas State Univ, USDA ARS, Manhattan, KS 66506 USA
[2] Kansas State Univ, Dep Agron, Manhattan, KS 66506 USA
[3] Cornell Univ, USDA ARS, RW Holley Ctr, Ithaca, NY 14853 USA
[4] Cornell Univ, Dep Plant Breeding & Genet, Ithaca, NY 14853 USA
[5] Int Maize & Wheat Improvement Ctr CIMMYT, Mexico City 06600, DF, Mexico
基金
比尔及梅琳达.盖茨基金会; 美国农业部;
关键词
ARRAYS TECHNOLOGY DART; QUANTITATIVE TRAITS; GENETIC VALUES; PREDICTION; REGRESSION; PEDIGREE;
D O I
10.3835/plantgenome2012.06.0006
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Genomic selection (GS) uses genomewide molecular markers to predict breeding values and make selections of individuals or breeding lines prior to phenotyping. Here we show that genotyping-by-sequencing (GBS) can be used for de novo genotyping of breeding panels and to develop accurate GS models, even for the large, complex, and polyploid wheat (Triticum aestivum L.) genome. With GBS we discovered 41,371 single nucleotide polymorphisms (SNPs) in a set of 254 advanced breeding lines from CIMMYT's semiarid wheat breeding program. Four different methods were evaluated for imputing missing marker scores in this set of unmapped markers, including random forest regression and a newly developed multivariate-normal expectation-maximization algorithm, which gave more accurate imputation than heterozygous or mean imputation at the marker level, although no significant differences were observed in the accuracy of genomic-estimated breeding values (GEBVs) among imputation methods. Genomic-estimated breeding value prediction accuracies with GBS were 0.28 to 0.45 for grain yield, an improvement of 0.1 to 0.2 over an established marker platform for wheat. Genotyping-by-sequencing combines marker discovery and genotyping of large populations, making it an excellent marker platform for breeding applications even in the absence of a reference genome sequence or previous polymorphism discovery. In addition, the flexibility and low cost of GBS make this an ideal approach for genomics-assisted breeding.
引用
收藏
页码:103 / 113
页数:11
相关论文
共 50 条
  • [31] Genomic Selection in Plant Breeding: A Comparison of Models
    Heslot, Nicolas
    Yang, Hsiao-Pei
    Sorrells, Mark E.
    Jannink, Jean-Luc
    CROP SCIENCE, 2012, 52 (01) : 146 - 160
  • [32] Optimum breeding strategies using genomic selection for hybrid breeding in wheat, maize, rye, barley, rice and triticale
    Marulanda, Jose J.
    Mi, Xuefei
    Melchinger, Albrecht E.
    Xu, Jian-Long
    Wuerschum, T.
    Longin, C. Friedrich H.
    THEORETICAL AND APPLIED GENETICS, 2016, 129 (10) : 1901 - 1913
  • [33] Genomic prediction in CIMMYT maize and wheat breeding programs
    Crossa, J.
    Perez, P.
    Hickey, J.
    Burgueno, J.
    Ornella, L.
    Ceron-Rojas, J.
    Zhang, X.
    Dreisigacker, S.
    Babu, R.
    Li, Y.
    Bonnett, D.
    Mathews, K.
    HEREDITY, 2014, 112 (01) : 48 - 60
  • [34] Genomic Selection for Grain Yield in the CIMMYT Wheat Breeding Program-Status and Perspectives
    Juliana, Philomin
    Prakash Singh, Ravi
    Braun, Hans-Joachim
    Huerta-Espino, Julio
    Crespo-Herrera, Leonardo
    Govindan, Velu
    Mondal, Suchismita
    Poland, Jesse
    Shrestha, Sandesh
    FRONTIERS IN PLANT SCIENCE, 2020, 11
  • [35] Comparison of methods used to identify superior individuals in genomic selection in plant breeding
    Bhering, L. L.
    Junqueira, V. S.
    Peixoto, L. A.
    Cruz, C. D.
    Laviola, B. G.
    GENETICS AND MOLECULAR RESEARCH, 2015, 14 (03) : 10888 - 10896
  • [36] Early Selection Enabled by the Implementation of Genomic Selection in Coffea arabica Breeding
    Sousa, Tiago Vieira
    Caixeta, Eveline Teixeira
    Alkimim, Emilly Ruas
    Baiao Oliveira, Antonio Carlos
    Pereira, Antonio Alves
    Sakiyama, Ney Sussumu
    Zambolim, Laorcio
    Viiela Resende, Marcos Deon
    FRONTIERS IN PLANT SCIENCE, 2019, 9
  • [37] Genomic Selection in Plant Breeding: Methods, Models, and Perspectives
    Crossa, Jose
    Perez-Rodriguez, Paulino
    Cuevas, Jaime
    Montesinos-Lopez, Osval
    Jarquin, Diego
    de los Campos, Gustavo
    Burgueno, Juan
    Gonzalez-Camacho, Juan M.
    Perez-Elizalde, Sergio
    Beyene, Yoseph
    Dreisigacker, Susanne
    Singh, Ravi
    Zhang, Xuecai
    Gowda, Manje
    Roorkiwal, Manish
    Rutkoski, Jessica
    Varshney, Rajeev K.
    TRENDS IN PLANT SCIENCE, 2017, 22 (11) : 961 - 975
  • [38] Agro-Morphological, Yield, and Genotyping-by-Sequencing Data of Selected Wheat (Triticum aestivum) Germplasm From Pakistan
    Islam, Madiha
    Abdullah
    Zubaida, Bibi
    Amin, Nageena
    Khan, Rashid Iqbal
    Shafqat, Noshin
    Masood, Rabia
    Waseem, Shahid
    Tahir, Jibran
    Ahmed, Ibrar
    Naeem, Muhammad
    Ahmad, Habib
    FRONTIERS IN GENETICS, 2021, 12
  • [39] Sparse testing using genomic prediction improves selection for breeding targets in elite spring wheat
    Atanda, Sikiru Adeniyi
    Govindan, Velu
    Singh, Ravi
    Robbins, Kelly R.
    Crossa, Jose
    Bentley, Alison R.
    THEORETICAL AND APPLIED GENETICS, 2022, 135 (06) : 1939 - 1950
  • [40] Breeding schemes for the implementation of genomic selection in wheat (Triticum spp.)
    Bassi, Filippo M.
    Bentley, Alison R.
    Charmet, Gilles
    Ortiz, Rodomiro
    Crossa, Jose
    PLANT SCIENCE, 2016, 242 : 23 - 36