Short-Term and Long-Term Forecasting for the 3D Point Position Changing by Using Artificial Neural Networks

被引:5
作者
Alevizakou, Eleni-Georgia [1 ]
Siolas, George [2 ]
Pantazis, George [1 ]
机构
[1] Natl Tech Univ Athens, Sch Rural & Surveying Engn, Athens 15780, Greece
[2] Natl Tech Univ Athens, Sch Elect & Comp Engn, Athens 15780, Greece
关键词
Artificial Neural Network (ANN); non-linear autoregressive recurrent network (NAR); non-linear autoregressive with eXogenous inputs (NARX); Geodesy; 3D position changing; short-term forecasting; long-term forecasting; Data Mining; KNOWLEDGE DISCOVERY; SUBSIDENCE; PREDICTION; EVOLUTION;
D O I
10.3390/ijgi7030086
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Forecasting is one of the most growing areas in most sciences attracting the attention of many researchers for more extensive study. Therefore, the goal of this study is to develop an integrated forecasting methodology based on an Artificial Neural Network (ANN), which is a modern and attractive intelligent technique. The final result is to provide short-term and long-term forecasts for point position changing, i.e., the displacement or deformation of the surface they belong to. The motivation was the combination of two thoughts, the insertion of the forecasting concept in Geodesy as in the most scientific disciplines (e.g., Economics, Medicine) and the desire to know the future position of any point on a construction or on the earth's crustal. This methodology was designed to be accurate, stable and general for different kind of geodetic data. The basic procedure consists of the definition of the forecasting problem, the preliminary data analysis (data pre-processing), the definition of the most suitable ANN, its evaluation using the proper criteria and finally the production of forecasts. The methodology gives particular emphasis on the stages of the pre-processing and the evaluation. Additionally, the importance of the prediction intervals (PI) is emphasized. A case study, which includes geodetic data from the year 2003 to the year 2016-namely X, Y, Z coordinates-is implemented. The data were acquired by 1000 permanent Global Navigation Satellite System (GNSS) stations. During this case study, 2016 ANNs-with different hyper-parameters-are trained and tested for short-term forecasting and 2016 for long-term forecasting, for each of the GNSS stations. In addition, other conventional statistical forecasting methods are used for the same purpose using the same data set. Finally the most appropriate Non-linear Autoregressive Recurrent network (NAR) or Non-linear Autoregressive with eXogenous inputs (NARX) for the forecasting of 3D point position changing is presented and evaluated. It is proved that the use of ANNs, in order to make short-term and long-term forecasts, provides forecasting changes of the order of 2 mm with Mean Absolute Error (MAE) of the order of 0.5 mm.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Short-Term Price Forecasting Models Based on Artificial Neural Networks for Intraday Sessions in the Iberian Electricity Market
    Monteiro, Claudio
    Ramirez-Rosado, Ignacio J.
    Alfredo Fernandez-Jimenez, L.
    Conde, Pedro
    ENERGIES, 2016, 9 (09)
  • [22] Short Term Load Forecasting Using Artificial Neural Network
    Singh, Saurabh
    Hussain, Shoeb
    Bazaz, Mohammad Abid
    2017 FOURTH INTERNATIONAL CONFERENCE ON IMAGE INFORMATION PROCESSING (ICIIP), 2017, : 159 - 163
  • [23] Short-term and Medium-term Gas Demand Load Forecasting by Neural Networks
    Azari, Ahmad
    Shariaty-Niassar, Mojtaba
    Alborzi, Mahmoud
    IRANIAN JOURNAL OF CHEMISTRY & CHEMICAL ENGINEERING-INTERNATIONAL ENGLISH EDITION, 2012, 31 (04): : 77 - 84
  • [24] Runoff Forecasting using Convolutional Neural Networks and optimized Bi-directional Long Short-term Memory
    Wu, Junhao
    Wang, Zhaocai
    Hu, Yuan
    Tao, Sen
    Dong, Jinghan
    WATER RESOURCES MANAGEMENT, 2023, 37 (02) : 937 - 953
  • [25] Short-term wind speed forecasting based on long short-term memory and improved BP neural network
    Chen, Gonggui
    Tang, Bangrui
    Zeng, Xianjun
    Zhou, Ping
    Kang, Peng
    Long, Hongyu
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2022, 134
  • [26] Short-term solar irradiance forecasting using convolutional neural networks and cloud imagery
    Choi, Minsoo
    Rachunok, Benjamin
    Nateghi, Roshanak
    ENVIRONMENTAL RESEARCH LETTERS, 2021, 16 (04)
  • [27] TLIA: Time-series forecasting model using long short-term memory integrated with artificial neural networks for volatile energy markets
    AL-Alimi, Dalal
    AlRassas, Ayman Mutahar
    Al-qaness, Mohammed A. A.
    Cai, Zhihua
    Aseeri, Ahmad O.
    Abd Elaziz, Mohamed
    Ewees, Ahmed A.
    APPLIED ENERGY, 2023, 343
  • [28] Forecasting hotel reservations with long short-term memory-based recurrent neural networks
    Wang, Jian
    Duggasani, Amar
    INTERNATIONAL JOURNAL OF DATA SCIENCE AND ANALYTICS, 2020, 9 (01) : 77 - 94
  • [29] Short-Term Wind Speed Forecasting for Power Generation in Hamirpur, Himachal Pradesh, India, Using Artificial Neural Networks
    Yadav, Amit Kumar
    Malik, Hasmat
    APPLICATIONS OF ARTIFICIAL INTELLIGENCE TECHNIQUES IN ENGINEERING, VOL 2, 2019, 697 : 263 - 271
  • [30] Wind Speed Forecasting Using Recurrent Neural Networks and Long Short Term Memory
    Ningsih, Fitriana R.
    Djamal, Esmeralda C.
    Najmurrakhman, Asep
    PROCEEDINGS OF THE 2019 6TH INTERNATIONAL CONFERENCE ON INSTRUMENTATION, CONTROL, AND AUTOMATION (ICA), 2019, : 137 - 141