Short-Term and Long-Term Forecasting for the 3D Point Position Changing by Using Artificial Neural Networks

被引:5
作者
Alevizakou, Eleni-Georgia [1 ]
Siolas, George [2 ]
Pantazis, George [1 ]
机构
[1] Natl Tech Univ Athens, Sch Rural & Surveying Engn, Athens 15780, Greece
[2] Natl Tech Univ Athens, Sch Elect & Comp Engn, Athens 15780, Greece
关键词
Artificial Neural Network (ANN); non-linear autoregressive recurrent network (NAR); non-linear autoregressive with eXogenous inputs (NARX); Geodesy; 3D position changing; short-term forecasting; long-term forecasting; Data Mining; KNOWLEDGE DISCOVERY; SUBSIDENCE; PREDICTION; EVOLUTION;
D O I
10.3390/ijgi7030086
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Forecasting is one of the most growing areas in most sciences attracting the attention of many researchers for more extensive study. Therefore, the goal of this study is to develop an integrated forecasting methodology based on an Artificial Neural Network (ANN), which is a modern and attractive intelligent technique. The final result is to provide short-term and long-term forecasts for point position changing, i.e., the displacement or deformation of the surface they belong to. The motivation was the combination of two thoughts, the insertion of the forecasting concept in Geodesy as in the most scientific disciplines (e.g., Economics, Medicine) and the desire to know the future position of any point on a construction or on the earth's crustal. This methodology was designed to be accurate, stable and general for different kind of geodetic data. The basic procedure consists of the definition of the forecasting problem, the preliminary data analysis (data pre-processing), the definition of the most suitable ANN, its evaluation using the proper criteria and finally the production of forecasts. The methodology gives particular emphasis on the stages of the pre-processing and the evaluation. Additionally, the importance of the prediction intervals (PI) is emphasized. A case study, which includes geodetic data from the year 2003 to the year 2016-namely X, Y, Z coordinates-is implemented. The data were acquired by 1000 permanent Global Navigation Satellite System (GNSS) stations. During this case study, 2016 ANNs-with different hyper-parameters-are trained and tested for short-term forecasting and 2016 for long-term forecasting, for each of the GNSS stations. In addition, other conventional statistical forecasting methods are used for the same purpose using the same data set. Finally the most appropriate Non-linear Autoregressive Recurrent network (NAR) or Non-linear Autoregressive with eXogenous inputs (NARX) for the forecasting of 3D point position changing is presented and evaluated. It is proved that the use of ANNs, in order to make short-term and long-term forecasts, provides forecasting changes of the order of 2 mm with Mean Absolute Error (MAE) of the order of 0.5 mm.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Short-term electric load forecasting in Tunisia using artificial neural networks
    Houimli, Rim
    Zmami, Mourad
    Ben-Salha, Ousama
    ENERGY SYSTEMS-OPTIMIZATION MODELING SIMULATION AND ECONOMIC ASPECTS, 2020, 11 (02): : 357 - 375
  • [2] Short-Term Load Forecasting for Microgrids Based on Artificial Neural Networks
    Hernandez, Luis
    Baladron, Carlos
    Aguiar, Javier M.
    Carro, Belen
    Sanchez-Esguevillas, Antonio J.
    Lloret, Jaime
    ENERGIES, 2013, 6 (03) : 1385 - 1408
  • [3] Short-Term Price Forecasting For Agro-products Using Artificial Neural Networks
    Li, Gan-qiong
    Xu, Shi-wei
    Li, Zhe-min
    INTERNATIONAL CONFERENCE ON AGRICULTURAL RISK AND FOOD SECURITY 2010, 2010, 1 : 278 - 287
  • [4] Long-term power forecasting of photovoltaic plants using artificial neural networks
    Rivero-Cacho, Antonio
    Sanchez-Barroso, Gonzalo
    Gonzalez-Dominguez, Jaime
    Garcia-Sanz-Calcedo, Justo
    ENERGY REPORTS, 2024, 12 : 2855 - 2864
  • [5] Industrial Financial Forecasting using Long Short-Term Memory Recurrent Neural Networks
    Ali, Muhammad Mohsin
    Babar, Muhammad Imran
    Hamza, Muhammad
    Jehanzeb, Muhammad
    Habib, Saad
    Khan, Muhammad Sajid
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2019, 10 (04) : 88 - 99
  • [6] Short-term forecasting of soil temperature using artificial neural network
    Tabari, Hossein
    Talaee, P. Hosseinzadeh
    Willems, Patrick
    METEOROLOGICAL APPLICATIONS, 2015, 22 (03) : 576 - 585
  • [7] Short-Term Traffic Flow Forecasting by Mutual Information and Artificial Neural Networks
    Hosseini, Seyed Hadi
    Moshiri, Behzad
    Rahimi-Kian, Ashkan
    Araabi, Babak N.
    2012 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL TECHNOLOGY (ICIT), 2012, : 1135 - 1140
  • [8] On-line short-term streamflow forecasting using neural networks
    Mashor, MY
    FRIEND 2002-REGIONAL HYDROLOGY: BRIDGING THE GAP BETWEEN RESEARCH AND PRACTICE, 2002, (274): : 205 - 212
  • [9] Long-term inflow forecast using meteorological data based on long short-term memory neural networks
    Zhao, Hongye
    Liao, Shengli
    Song, Yitong
    Fang, Zhou
    Ma, Xiangyu
    Zhou, Binbin
    JOURNAL OF HYDROINFORMATICS, 2024, 26 (05) : 954 - 971
  • [10] Short-term forecasting of rail transit passenger flow based on long short-term memory neural network
    Liu, Yuan
    Qin, Yong
    Guo, Jianyuan
    Cai, Changjun
    Wang, Yaguan
    Jia, Limin
    2018 INTERNATIONAL CONFERENCE ON INTELLIGENT RAIL TRANSPORTATION (ICIRT), 2018,