Dual convergence of the legendre pseudospectral method for solving nonlinear constrained optimal control problems

被引:0
作者
Gong, Q [1 ]
Ross, IM [1 ]
Kang, W [1 ]
Fahroo, F [1 ]
机构
[1] USN, Postgrad Sch, Dept Mech & Astronaut Engn, Monterey, CA 93943 USA
来源
PROCEEDINGS OF THE EIGHTH IASTED INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS AND CONTROL | 2005年
关键词
constrained optimal control; pseudospectral methods; nonlinear systems;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper we present a modified Pseudospectral method for constrained nonlinear optimal control problems. The convergence is guaranteed under verifiable conditions. We also show that the convergence of the primal variables does not necessarily imply convergence of the duals. The Covector Mapping Theorem is clarified and the issue of constraint qualifications is demonstrated by a simple example. Conditions for the convergence of the duals are described and illustrated.
引用
收藏
页码:431 / 436
页数:6
相关论文
共 16 条
[1]  
Betts John T, 2001, ADV DESIGN CONTROL
[2]  
Boyd J. P., 2001, CHEBYSHEV FOURIER SP
[3]  
Canuto C., 1988, Spectral Method In Fluid Dynamics
[4]  
Dontchev AL, 2001, MATH COMPUT, V70, P173, DOI 10.1090/S0025-5718-00-01184-4
[5]   THE PSEUDOSPECTRAL LEGENDRE METHOD FOR DISCRETIZING OPTIMAL-CONTROL PROBLEMS [J].
ELNAGAR, G ;
KAZEMI, MA ;
RAZZAGHI, M .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1995, 40 (10) :1793-1796
[6]   Costate estimation by a Legendre pseudospectral method [J].
Fahroo, F ;
Ross, IM .
JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 2001, 24 (02) :270-277
[7]   SNOPT: An SQP algorithm for large-scale constrained optimization [J].
Gill, PE ;
Murray, W ;
Saunders, MA .
SIAM JOURNAL ON OPTIMIZATION, 2002, 12 (04) :979-1006
[8]  
GONG Q, 2005, UNPUB SIAM J SCI COM
[9]  
Hager WW, 2000, NUMER MATH, V87, P247, DOI 10.1007/S002110000178
[10]   Closed-loop endoatmospheric ascent guidance [J].
Lu, P ;
Sun, HS ;
Tsai, B .
JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 2003, 26 (02) :283-294