A Nonparametric Bayesian Approach for the Two-Sample Problem

被引:0
作者
Ceregatti, Rafael de C. [1 ]
Izbicki, Rafael [1 ]
Salasar, Luis Ernesto B. [1 ]
机构
[1] Univ Fed Sao Carlos, Rod Washington Luis Km 235,SP-310, Sao Carlos, SP, Brazil
来源
BAYESIAN INFERENCE AND MAXIMUM ENTROPY METHODS IN SCIENCE AND ENGINEERING, MAXENT 37 | 2018年 / 239卷
基金
巴西圣保罗研究基金会;
关键词
Bayesian inference; Hypothesis tests; Nonparametric inference;
D O I
10.1007/978-3-319-91143-4_22
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we propose a novel nonparametric Bayesian approach to the so-called two-sample problem. Let X-1, . . . , X-n and Y-1, . . . , Y-m be two independent i.i.d samples generated from P-1 and P-2, respectively. Using a nonparametric prior distribution for (P-1, P-2), we propose a new evidence index for the null hypothesis H-0 : P-1 = P-2 based on the posterior distribution of the distance d(P-1, P-2) between P-1 and P-2. This evidence index is easy to compute, has an intuitive interpretation, and can also be justified from a Bayesian decision-theoretic framework. We provide a simulation study to show that our method achieves greater power than the Kolmogorov-Smirnov and the Wilcoxon tests in several settings. Finally, we apply the method to a dataset on Alzheimer's disease.
引用
收藏
页码:231 / 241
页数:11
相关论文
共 16 条
[1]  
[Anonymous], 2005, OPTIMAL STAT DECISIO
[2]  
[Anonymous], 1999, Entropy, DOI DOI 10.3390/E1040099
[3]   A Bayesian framework for the analysis of microarray expression data: regularized t-test and statistical inferences of gene changes [J].
Baldi, P ;
Long, AD .
BIOINFORMATICS, 2001, 17 (06) :509-519
[4]   Marginal likelihood and Bayes factors for Dirichlet process mixture models [J].
Basu, S ;
Chib, S .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2003, 98 (461) :224-235
[5]   A subtest analysis of the Montreal cognitive assessment (MoCA): which subtests can best discriminate between healthy controls, mild cognitive impairment and Alzheimer's disease? [J].
Cecato, Juliana Francisco ;
Martinelli, Jose Eduardo ;
Izbicki, Rafael ;
Yassuda, Monica Sanches ;
Aprahamian, Ivan .
INTERNATIONAL PSYCHOGERIATRICS, 2016, 28 (05) :825-832
[6]   BAYESIAN ANALYSIS OF SOME NONPARAMETRIC PROBLEMS [J].
FERGUSON, TS .
ANNALS OF STATISTICS, 1973, 1 (02) :209-230
[7]   The Bayesian two-sample t test [J].
Gönen, M ;
Johnson, WO ;
Lu, YG ;
Westfall, PH .
AMERICAN STATISTICIAN, 2005, 59 (03) :252-257
[8]   THE BAYES NONBAYES COMPROMISE - A BRIEF REVIEW [J].
GOOD, IJ .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1992, 87 (419) :597-606
[9]   Two-sample Bayesian Nonparametric Hypothesis Testing [J].
Holmes, Chris C. ;
Caron, Francois ;
Griffin, Jim E. ;
Stephens, David A. .
BAYESIAN ANALYSIS, 2015, 10 (02) :297-320
[10]   Testing allele homogeneity: the problem of nested hypotheses [J].
Izbicki, Rafael ;
Fossaluza, Victor ;
Hounie, Ana Gabriela ;
Nakano, Eduardo Yoshio ;
de Braganca Pereira, Carlos Alberto .
BMC GENETICS, 2012, 13