The Impact of Imputation on Meta-Analysis of Genome-Wide Association Studies

被引:12
作者
Li, Jian [1 ]
Guo, Yan-fang [2 ]
Pei, Yufang [1 ,3 ]
Deng, Hong-Wen [1 ,3 ,4 ,5 ]
机构
[1] Tulane Univ, Sch Publ Hlth & Trop Med, New Orleans, LA 70118 USA
[2] So Med Univ, Sch Biomed Engn, Guangzhou, Guangdong, Peoples R China
[3] Shanghai Univ Sci & Technol, Ctr Syst Biomed Sci, Shanghai 201800, Peoples R China
[4] Hunan Normal Univ, Coll Life Sci, Minist Educ, Lab Mol & Stat Genet, Changsha, Hunan, Peoples R China
[5] Hunan Normal Univ, Coll Life Sci, Minist Educ, Key Lab Prot Chem & Dev Biol, Changsha, Hunan, Peoples R China
基金
美国国家卫生研究院;
关键词
DIABETES RISK LOCI; SUSCEPTIBILITY LOCI; GENOTYPES; DATASETS; DISEASE; TRAITS;
D O I
10.1371/journal.pone.0034486
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Genotype imputation is often used in the meta-analysis of genome-wide association studies (GWAS), for combining data from different studies and/or genotyping platforms, in order to improve the ability for detecting disease variants with small to moderate effects. However, how genotype imputation affects the performance of the meta-analysis of GWAS is largely unknown. In this study, we investigated the effects of genotype imputation on the performance of meta-analysis through simulations based on empirical data from the Framingham Heart Study. We found that when fix-effects models were used, considerable between-study heterogeneity was detected when causal variants were typed in only some but not all individual studies, resulting in up to similar to 25% reduction of detection power. For certain situations, the power of the meta-analysis can be even less than that of individual studies. Additional analyses showed that the detection power was slightly improved when between-study heterogeneity was partially controlled through the random-effects model, relative to that of the fixed-effects model. Our study may aid in the planning, data analysis, and interpretation of GWAS meta-analysis results when genotype imputation is necessary.
引用
收藏
页数:7
相关论文
共 23 条
[11]   A new multipoint method for genome-wide association studies by imputation of genotypes [J].
Marchini, Jonathan ;
Howie, Bryan ;
Myers, Simon ;
McVean, Gil ;
Donnelly, Peter .
NATURE GENETICS, 2007, 39 (07) :906-913
[12]   Genome-wide association studies for complex traits: consensus, uncertainty and challenges [J].
McCarthy, Mark I. ;
Abecasis, Goncalo R. ;
Cardon, Lon R. ;
Goldstein, David B. ;
Little, Julian ;
Ioannidis, John P. A. ;
Hirschhorn, Joel N. .
NATURE REVIEWS GENETICS, 2008, 9 (05) :356-369
[13]   Genome-wide association studies: potential next steps on a genetic journey [J].
McCarthy, Mark I. ;
Hirschhorn, Joel N. .
HUMAN MOLECULAR GENETICS, 2008, 17 :R156-R165
[14]   Analyses and Comparison of Imputation-Based Association Methods [J].
Pei, Yu-Fang ;
Zhang, Lei ;
Li, Jian ;
Deng, Hong-Wen .
PLOS ONE, 2010, 5 (05)
[15]   Common variants at CD40 and other loci confer risk of rheumatoid arthritis [J].
Raychaudhuri, Soumya ;
Remmers, Elaine F. ;
Lee, Annette T. ;
Hackett, Rachel ;
Guiducci, Candace ;
Burtt, Noel P. ;
Gianniny, Lauren ;
Korman, Benjamin D. ;
Padyukov, Leonid ;
Kurreeman, Fina A. S. ;
Chang, Monica ;
Catanese, Joseph J. ;
Ding, Bo ;
Wong, Sandra ;
Mil, Annette H. M. van der Helm-van ;
Neale, Benjamin M. ;
Coblyn, Jonathan ;
Cui, Jing ;
Tak, Paul P. ;
Wolbink, Gert Jan ;
Crusius, J. Bart A. ;
van der Horst-Bruinsma, Irene E. ;
Criswell, Lindsey A. ;
Amos, Christopher I. ;
Seldin, Michael F. ;
Kastner, Daniel L. ;
Ardlie, Kristin G. ;
Alfredsson, Lars ;
Costenbader, Karen H. ;
Altshuler, David ;
Huizinga, Tom W. J. ;
Shadick, Nancy A. ;
Weinblatt, Michael E. ;
de Vries, Niek ;
Worthington, Jane ;
Seielstad, Mark ;
Toes, Rene E. M. ;
Karlson, Elizabeth W. ;
Begovich, Ann B. ;
Klareskog, Lars ;
Gregersen, Peter K. ;
Daly, Mark J. ;
Plenge, Robert M. .
NATURE GENETICS, 2008, 40 (10) :1216-1223
[16]   Testing the association of novel meta-analysis-derived diabetes risk genes with type II diabetes and related metabolic traits in Asian Indian Sikhs [J].
Sanghera, Dharambir K. ;
Been, Latonya ;
Ortega, Lyda ;
Wander, Gurpreet S. ;
Mehra, Narinder K. ;
Aston, Christopher E. ;
Mulvihill, John J. ;
Ralhan, Sarju .
JOURNAL OF HUMAN GENETICS, 2009, 54 (03) :162-168
[17]   Novel Meta-Analysis-Derived Type 2 Diabetes Risk Loci Do Not Determine Prediabetic Phenotypes [J].
Staiger, Harald ;
Machicao, Fausto ;
Kantartzis, Konstantinos ;
Schaefer, Silke A. ;
Kirchhoff, Kerstin ;
Guthoff, Martina ;
Silbernagel, Guenther ;
Stefan, Norbert ;
Fritsche, Andreas ;
Haering, Hans-Ulrich .
PLOS ONE, 2008, 3 (08)
[18]   HAPGEN2: simulation of multiple disease SNPs [J].
Su, Zhan ;
Marchini, Jonathan ;
Donnelly, Peter .
BIOINFORMATICS, 2011, 27 (16) :2304-2305
[19]   Genome-wide association studies: a new window into immune-mediated diseases [J].
Xavier, Ramnik J. ;
Rioux, John D. .
NATURE REVIEWS IMMUNOLOGY, 2008, 8 (08) :631-643
[20]   Genome-wide Association and Follow-Up Replication Studies Identified ADAMTS18 and TGFBR3 as Bone Mass Candidate Genes in Different Ethnic Groups [J].
Xiong, Dong-Hai ;
Liu, Xiao-Gang ;
Guo, Yan-Fang ;
Tan, Li-Jun ;
Wang, Liang ;
Sha, Bao-Yong ;
Tang, Zi-Hui ;
Pan, Feng ;
Yang, Tie-Lin ;
Chen, Xiang-Ding ;
Lei, Shu-Feng ;
Yerges, Laura M. ;
Zhu, Xue-Zen ;
Wheeler, Victor W. ;
Patrick, Alan L. ;
Bunker, ClareAnn H. ;
Guo, Yan ;
Yan, Han ;
Pei, Yu-Fang ;
Zhang, Yin-Pin ;
Levy, Shawn ;
Papasian, Christopher J. ;
Xiao, Peng ;
Lundberg, Y. Wang ;
Recker, Robert R. ;
Liu, Yao-Zhong ;
Liu, Yong-Jun ;
Zmuda, Joseph M. ;
Deng, Hong-Wen .
AMERICAN JOURNAL OF HUMAN GENETICS, 2009, 84 (03) :388-398