The Impact of Imputation on Meta-Analysis of Genome-Wide Association Studies

被引:12
作者
Li, Jian [1 ]
Guo, Yan-fang [2 ]
Pei, Yufang [1 ,3 ]
Deng, Hong-Wen [1 ,3 ,4 ,5 ]
机构
[1] Tulane Univ, Sch Publ Hlth & Trop Med, New Orleans, LA 70118 USA
[2] So Med Univ, Sch Biomed Engn, Guangzhou, Guangdong, Peoples R China
[3] Shanghai Univ Sci & Technol, Ctr Syst Biomed Sci, Shanghai 201800, Peoples R China
[4] Hunan Normal Univ, Coll Life Sci, Minist Educ, Lab Mol & Stat Genet, Changsha, Hunan, Peoples R China
[5] Hunan Normal Univ, Coll Life Sci, Minist Educ, Key Lab Prot Chem & Dev Biol, Changsha, Hunan, Peoples R China
基金
美国国家卫生研究院;
关键词
DIABETES RISK LOCI; SUSCEPTIBILITY LOCI; GENOTYPES; DATASETS; DISEASE; TRAITS;
D O I
10.1371/journal.pone.0034486
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Genotype imputation is often used in the meta-analysis of genome-wide association studies (GWAS), for combining data from different studies and/or genotyping platforms, in order to improve the ability for detecting disease variants with small to moderate effects. However, how genotype imputation affects the performance of the meta-analysis of GWAS is largely unknown. In this study, we investigated the effects of genotype imputation on the performance of meta-analysis through simulations based on empirical data from the Framingham Heart Study. We found that when fix-effects models were used, considerable between-study heterogeneity was detected when causal variants were typed in only some but not all individual studies, resulting in up to similar to 25% reduction of detection power. For certain situations, the power of the meta-analysis can be even less than that of individual studies. Additional analyses showed that the detection power was slightly improved when between-study heterogeneity was partially controlled through the random-effects model, relative to that of the fixed-effects model. Our study may aid in the planning, data analysis, and interpretation of GWAS meta-analysis results when genotype imputation is necessary.
引用
收藏
页数:7
相关论文
共 23 条
[1]   Evaluating the effects of imputation on the power, coverage, and cost efficiency of genome-wide SNP platforms [J].
Anderson, Carl A. ;
Pettersson, Fredrik H. ;
Barrett, Jeffrey C. ;
Zhuang, Joanna J. ;
Ragoussis, Jiannis ;
Cardon, Lon R. ;
Morris, Andrew P. .
AMERICAN JOURNAL OF HUMAN GENETICS, 2008, 83 (01) :112-119
[2]   THE COMBINATION OF ESTIMATES FROM DIFFERENT EXPERIMENTS [J].
COCHRAN, WG .
BIOMETRICS, 1954, 10 (01) :101-129
[3]   Meta-analysis of genome-wide association study data identifies additional type 1 diabetes risk loci [J].
Cooper, Jason D. ;
Smyth, Deborah J. ;
Smiles, Adam M. ;
Plagnol, Vincent ;
Walker, Neil M. ;
Allen, James E. ;
Downes, Kate ;
Barrett, Jeffrey C. ;
Healy, Barry C. ;
Mychaleckyj, Josyf C. ;
Warram, James H. ;
Todd, John A. .
NATURE GENETICS, 2008, 40 (12) :1399-1401
[4]   Practical aspects of imputation-driven meta-analysis of genome-wide association studies [J].
de Bakker, Paul I. W. ;
Ferreira, Manuel A. R. ;
Jia, Xiaoming ;
Neale, Benjamin M. ;
Raychaudhuri, Soumya ;
Voight, Benjamin F. .
HUMAN MOLECULAR GENETICS, 2008, 17 :R122-R128
[5]   Meta-Analysis in Genome-Wide Association Datasets: Strategies and Application in Parkinson Disease [J].
Evangelou, Evangelos ;
Maraganore, Demetrius M. ;
Ioannidis, John P. A. .
PLOS ONE, 2007, 2 (02)
[6]   Collaborative genome-wide association analysis supports a role for ANK3 and CACNA1C in bipolar disorder [J].
Ferreira, Manuel A. R. ;
O'Donovan, Michael C. ;
Meng, Yan A. ;
Jones, Ian R. ;
Ruderfer, Douglas M. ;
Jones, Lisa ;
Fan, Jinbo ;
Kirov, George ;
Perlis, Roy H. ;
Green, Elaine K. ;
Smoller, Jordan W. ;
Grozeva, Detelina ;
Stone, Jennifer ;
Nikolov, Ivan ;
Chambert, Kimberly ;
Hamshere, Marian L. ;
Nimgaonkar, Vishwajit L. ;
Moskvina, Valentina ;
Thase, Michael E. ;
Caesar, Sian ;
Sachs, Gary S. ;
Franklin, Jennifer ;
Gordon-Smith, Katherine ;
Ardlie, Kristin G. ;
Gabriel, Stacey B. ;
Fraser, Christine ;
Blumenstiel, Brendan ;
Defelice, Matthew ;
Breen, Gerome ;
Gill, Michael ;
Morris, Derek W. ;
Elkin, Amanda ;
Muir, Walter J. ;
McGhee, Kevin A. ;
Williamson, Richard ;
MacIntyre, Donald J. ;
MacLean, Alan W. ;
Clair, David St ;
Robinson, Michelle ;
Van Beck, Margaret ;
Pereira, Ana C. P. ;
Kandaswamy, Radhika ;
McQuillin, Andrew ;
Collier, David A. ;
Bass, Nicholas J. ;
Young, Allan H. ;
Lawrence, Jacob ;
Ferrier, I. Nicol ;
Anjorin, Adebayo ;
Farmer, Anne .
NATURE GENETICS, 2008, 40 (09) :1056-1058
[7]   Meta-analysis of genome-wide association data identifies four new susceptibility loci for colorectal cancer [J].
Houlston, Richard S. ;
Webb, Emily ;
Broderick, Peter ;
Pittman, Alan M. ;
Di Bernardo, Maria Chiara ;
Lubbe, Steven ;
Chandler, Ian ;
Vijayakrishnan, Jayaram ;
Sullivan, Kate ;
Penegar, Steven ;
Carvajal-Carmona, Luis ;
Howarth, Kimberley ;
Jaeger, Emma ;
Spain, Sarah L. ;
Walther, Axel ;
Barclay, Ella ;
Martin, Lynn ;
Gorman, Maggie ;
Domingo, Enric ;
Teixeira, Ana S. ;
Kerr, David ;
Cazier, Jean-Baptiste ;
Niittymaki, Iina ;
Tuupanen, Sari ;
Karhu, Auli ;
Aaltonen, Lauri A. ;
Tomlinson, Ian P. M. ;
Farrington, Susan M. ;
Tenesa, Albert ;
Prendergast, James G. D. ;
Barnetson, Rebecca A. ;
Cetnarskyj, Roseanne ;
Porteous, Mary E. ;
Pharoah, Paul D. P. ;
Koessler, Thibaud ;
Hampe, Jochen ;
Buch, Stephan ;
Schafmayer, Clemens ;
Tepel, Jurgen ;
Schreiber, Stefan ;
Voelzke, Henry ;
Chang-Claude, Jenny ;
Hoffmeister, Michael ;
Brenner, Hermann ;
Zanke, Brent W. ;
Montpetit, Alexandre ;
Hudson, Thomas J. ;
Gallinger, Steven ;
Campbell, Harry ;
Dunlop, Malcolm G. .
NATURE GENETICS, 2008, 40 (12) :1426-1435
[8]   What can genome-wide association studies tell us about the genetics of common disease? [J].
Iles, Mark M. .
PLOS GENETICS, 2008, 4 (02)
[9]   Methods for meta-analysis in genetic association studies: a review of their potential and pitfalls [J].
Kavvoura, Fotini K. ;
Ioannidis, John P. A. .
HUMAN GENETICS, 2008, 123 (01) :1-14
[10]   IGG3: a tool to rapidly integrate large genotype datasets for whole-genome imputation and individual-level meta-analysis [J].
Li, Miao-Xin ;
Jiang, Lin ;
Kao, Patrick Yu-Ping ;
Sham, Pak-C. ;
Song, You-Qiang .
BIOINFORMATICS, 2009, 25 (11) :1449-1450