共 56 条
MOSAIC: A Modular Single-Molecule Analysis Interface for Decoding Multistate Nanopore Data
被引:90
作者:
Forstater, Jacob H.
[1
,2
]
Briggs, Kyle
[3
]
Robertson, Joseph W. F.
[1
]
Ettedgui, Jessica
[1
,2
]
Marie-Rose, Olivier
[4
]
Vaz, Canute
[1
]
Kasianowicz, John J.
[1
]
Tabard-Cossa, Vincent
[3
]
Balijepalli, Arvind
[1
]
机构:
[1] NIST, Phys Measurement Lab, Gaithersburg, MD 20899 USA
[2] Columbia Univ, Dept Chem Engn, New York, NY 10027 USA
[3] Univ Ottawa, Dept Phys, Ottawa, ON K1N 6NS, Canada
[4] NIST, Informat Technol Lab, Gaithersburg, MD 20899 USA
基金:
加拿大自然科学与工程研究理事会;
关键词:
SOLID-STATE NANOPORES;
ACCURATE DATA PROCESS;
ALPHA-HEMOLYSIN;
ION-CHANNEL;
DNA TRANSLOCATION;
MASS-SPECTROMETRY;
DISCRIMINATION;
DYNAMICS;
POLYMERS;
ORIENTATION;
D O I:
10.1021/acs.analchem.6b03725
中图分类号:
O65 [分析化学];
学科分类号:
070302 ;
081704 ;
摘要:
Biological and solid-state nanometer-scale pores are the basis for numerous emerging analytical technologies for use in precision medicine. We developed Modular Single Molecule Analysis Interface (MOSAIC), an open source analysis software that improves the accuracy and throughput of nanopore-based measurements. Two key algorithms are implemented: ADEPT, which uses a physical model of the nanopore system to characterize short-lived events that do not reach their steady-state current, and CUSUM+, a version of the cumulative sum statistical method optimized for longer events that do. We show that ADEPT detects previously unreported conductance states that occur as double-stranded DNA translocates through a 2.4 nm solid-state nanopore and reveals new interactions between short single-stranded DNA and the vestibule of a biological pore. These findings demonstrate the utility of MOSAIC and the ADEPT algorithm, and offer a new tool that can improve the analysis of nanopore-based measurements.
引用
收藏
页码:11900 / 11907
页数:8
相关论文