Particle flow oriented electromagnetic calorimeter optimization for the circular electron positron collider

被引:11
作者
Zhao, H. [1 ,2 ,3 ]
Fu, C. [1 ]
Yu, D. [1 ,4 ]
Wang, Z. [1 ]
Hu, T. [1 ]
Ruan, M. [1 ]
机构
[1] Chinese Acad Sci, Inst High Energy Phys, Beijing 100049, Peoples R China
[2] CAS Ctr Excellence Particle Phys, Beijing 100049, Peoples R China
[3] Collaborat Innovat Ctr Particles & Interact, Beijing 100049, Peoples R China
[4] Ecole Polytech, Lab Leprince Ringuet, Palaiseau, France
基金
中国国家自然科学基金;
关键词
Calorimeter methods; Detector modelling and simulations I (interaction of radiation with matter; interaction of photons with matter; interaction of hadrons with matter; etc); Simulation methods and programs;
D O I
10.1088/1748-0221/13/03/P03010
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
The design and optimization of the Electromagnetic Calorimeter (ECAL) are crucial for the Circular Electron Positron Collider (CEPC) project, a proposed future Higgs/Z factory. Following the reference design of the International Large Detector (ILD), a set of silicon- tungsten sampling ECAL geometries are implemented into the Geant4 simulation, whose performance is then scanned using Arbor algorithm. The photon energy response at different ECAL longitudinal structures is analyzed, and the separation performance between nearby photon showers with different ECAL transverse cell sizes is investigated and parametrized. The overall performance is characterized by a set of physics benchmarks, including vvH events where Higgs boson decays into a pair of photons (EM objects) or gluons (jets) and Z -> tau(+) tau(-) events. Based on these results, we propose an optimized ECAL geometry for the CEPC project.
引用
收藏
页数:14
相关论文
共 13 条
[1]   Jet reconstruction and performance using particle flow with the ATLAS Detector [J].
Aaboudd, M. ;
Aad, G. ;
Abbott, B. ;
Abdallah, J. ;
Abdinov, O. ;
Abeloos, B. ;
Abidi, S. H. ;
AbouZeid, O. S. ;
Abraham, N. L. ;
Abramowicz, H. ;
Abreu, H. ;
Abreu, R. ;
Abulaiti, Y. ;
Acharya, B. S. ;
Adachi, S. ;
Adamczyk, L. ;
Adelman, J. ;
Adersberger, M. ;
Adye, T. ;
Affolder, A. A. ;
Agatonovic-Jovin, T. ;
Agheorghiesei, C. ;
Aguilar-Saavedra, J. A. ;
Ahlen, S. P. ;
Ahmadov, F. ;
Aielli, G. ;
Akatsuka, S. ;
Akerstedt, H. ;
Akesson, T. P. A. ;
Akimov, A. V. ;
Alberghi, G. L. ;
Albert, J. ;
Alconada Verzini, M. J. ;
Aleksa, M. ;
Aleksandrov, I. N. ;
Alexa, C. ;
Alexander, G. ;
Alexopoulos, T. ;
Alhroob, M. ;
Ali, B. ;
Aliev, M. ;
Alimonti, G. ;
Alison, J. ;
Alkire, S. P. ;
Allbrooke, B. M. M. ;
Allen, B. W. ;
Allport, P. P. ;
Aloisio, A. ;
Alonso, A. ;
Alonso, F. .
EUROPEAN PHYSICAL JOURNAL C, 2017, 77 (07)
[2]   Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC [J].
Aad, G. ;
Abajyan, T. ;
Abbott, B. ;
Abdallah, J. ;
Khalek, S. Abdel ;
Abdelalim, A. A. ;
Abdinov, O. ;
Aben, R. ;
Abi, B. ;
Abolins, M. ;
AbouZeid, U. S. ;
Abramowicz, H. ;
Abreu, H. ;
Acharya, B. S. ;
Adamczyk, L. ;
Adams, D. L. ;
Addy, T. N. ;
Adelman, J. ;
Adomeit, S. ;
Adragna, P. ;
Adye, T. ;
Aefsky, S. ;
Aguilar-Saavedra, J. A. ;
Agustoni, M. ;
Aharrouche, M. ;
Ahlen, S. P. ;
Ahles, F. ;
Ahmad, A. ;
Ahsan, M. ;
Aielli, G. ;
Akdogan, T. ;
Akesson, T. P. A. ;
Akimoto, G. ;
Akimov, A. V. ;
Alam, M. S. ;
Alam, M. A. ;
Albert, J. ;
Albrand, S. ;
Aleksa, M. ;
Aleksandrov, I. N. ;
Alessandria, F. ;
Alexa, C. ;
Alexander, G. ;
Alexandre, G. ;
Alexopoulos, T. ;
Alhroob, M. ;
Aliev, M. ;
Alimonti, G. ;
Alison, J. ;
Allbrooke, B. M. M. .
PHYSICS LETTERS B, 2012, 716 (01) :1-29
[3]   GEANT4-a simulation toolkit [J].
Agostinelli, S ;
Allison, J ;
Amako, K ;
Apostolakis, J ;
Araujo, H ;
Arce, P ;
Asai, M ;
Axen, D ;
Banerjee, S ;
Barrand, G ;
Behner, F ;
Bellagamba, L ;
Boudreau, J ;
Broglia, L ;
Brunengo, A ;
Burkhardt, H ;
Chauvie, S ;
Chuma, J ;
Chytracek, R ;
Cooperman, G ;
Cosmo, G ;
Degtyarenko, P ;
Dell'Acqua, A ;
Depaola, G ;
Dietrich, D ;
Enami, R ;
Feliciello, A ;
Ferguson, C ;
Fesefeldt, H ;
Folger, G ;
Foppiano, F ;
Forti, A ;
Garelli, S ;
Giani, S ;
Giannitrapani, R ;
Gibin, D ;
Cadenas, JJG ;
González, I ;
Abril, GG ;
Greeniaus, G ;
Greiner, W ;
Grichine, V ;
Grossheim, A ;
Guatelli, S ;
Gumplinger, P ;
Hamatsu, R ;
Hashimoto, K ;
Hasui, H ;
Heikkinen, A ;
Howard, A .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2003, 506 (03) :250-303
[4]  
[Anonymous], arXiv:1306.6329
[5]  
[Anonymous], ARXIV14034784
[6]  
Chatrchyan S, 2012, PHYS LETT B, V716, P30
[7]  
CMS collaboration, 2017, J. Instrum., V12, DOI DOI 10.1088/1748-0221/12/10/P10003
[8]   The physics of hadronic tau decays [J].
Davier, Michel ;
Hoecker, Andreas ;
Zhang, Zhiqing .
REVIEWS OF MODERN PHYSICS, 2006, 78 (04) :1043-1109
[9]  
Ruan M., 2016, CEPC WORKSH BEIJ CHI
[10]   Development of a Highly Granular Silicon-Tungsten ECAL for the ILD [J].
Sudo, Y. ;
Kawagoe, K. ;
Suehara, T. ;
Tomita, T. ;
Yoshioka, T. ;
Frisson, T. ;
Poschl, R. ;
Balagura, V. ;
Boudry, V. ;
Brient, J-C. ;
Cornat, R. ;
Callier, S. ;
de la Taille, Ch. ;
Augustin, J-E. ;
David, J. ;
Ghislain, P. ;
Lacour, D. ;
Lavergne, L. ;
Chen, S. ;
Daniel, J. ;
Kozakai, C. .
NUCLEAR AND PARTICLE PHYSICS PROCEEDINGS, 2016, 273 :2554-2556