Parametric vertical coordinate formulation for multiscale, Boussinesq, and non-Boussinesq ocean modeling

被引:40
作者
Song, YT [1 ]
Hou, TY
机构
[1] CALTECH, Jet Prop Lab, Earth & Space Sci Div, Pasadena, CA 91109 USA
[2] CALTECH, Pasadena, CA 91125 USA
基金
美国国家航空航天局;
关键词
generalized vertical coordinate system; non-Boussinesq; multiscale applications;
D O I
10.1016/j.ocemod.2005.01.001
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Two physical parameters are introduced into the basic ocean equations to generalize numerical ocean models for various vertical coordinate systems and their hybrid features. The two parameters are formulated by combining three techniques: the arbitrary vertical coordinate system of Kasahara [Kasahara, A., 1974. Various vertical coordinate systems used for numerical weather prediction. Mon. Weather Rev. 102, 509-522], the Jacobian pressure gradient formulation of Song [Song, Y.T., 1998. A general pressure gradient formation for ocean models. Part I: Scheme design and diagnostic analysis. Mon. Weather Rev. 126 (12), 3213-3230], and a newly introduced parametric function that permits both Boussinesq (volume-conserving) and non-Boussinesq (mass-conserving) conditions. Based on this new formulation, a generalized modeling approach is proposed. Several representative oceanographic problems with different scales and characteristics-coastal canyon, seamount topography, non-Boussinesq Pacific Ocean with nested eastern Tropics, and a global ocean model-have been used to demonstrate the model's capabilities for multiscale applications. The inclusion of non-Boussinesq physics in the topography-following ocean model does not incur computational expense, but more faithfully represents satellite-observed ocean-bottom-pressure data. Such a generalized modeling approach is expected to benefit oceanographers in solving multiscale ocean-related problems by using various coordinate systems on the same numerical platform. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:298 / 332
页数:35
相关论文
共 96 条
  • [31] 2
  • [32] *DYNAMO GROUP, 1997, 294 BER I MEER
  • [33] Developments in terrain-following ocean models: intercomparisons of numerical aspects
    Ezer, Tal
    Arango, Hernan
    Shchepetkin, Alexander F.
    [J]. OCEAN MODELLING, 2002, 4 (3-4) : 249 - 267
  • [34] Fletcher C. A. J., 1991, Computational Techniques for Fluid Dynamics
  • [36] A PRIMITIVE EQUATION OCEAN CIRCULATION MODEL USING A GENERAL VERTICAL COORDINATE TRANSFORMATION .1. DESCRIPTION AND TESTING OF THE MODEL
    GERDES, R
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 1993, 98 (C8) : 14683 - 14701
  • [37] Greatbatch RJ, 2001, J ATMOS OCEAN TECH, V18, P1911, DOI 10.1175/1520-0426(2001)018<1911:RTBAIO>2.0.CO
  • [38] 2
  • [39] Developments in ocean climate modelling
    Griffies, Stephen M.
    Boening, Claus
    Bryan, Frank O.
    Chassignet, Eric P.
    Gerdes, Ruediger
    Hasumi, Hiroyasu
    Hirst, Anthony
    Treguier, Anne-Marie
    Webb, David
    [J]. OCEAN MODELLING, 2000, 2 (3-4) : 123 - 192
  • [40] Haidvogel D.B., 1999, NUMERICAL OCEAN CIRC