An Augmented Lagrangian Algorithm for Solving Semiinfinite Programming

被引:2
作者
Liu, Qian [1 ]
Wang, Changyu [2 ]
机构
[1] Shandong Normal Univ, Dept Math, Jinan, Peoples R China
[2] Qufu Normal Univ, Inst Operat Res, Qufu, Peoples R China
关键词
OPTIMIZATION;
D O I
10.1155/2012/145083
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a smooth augmented Lagrangian algorithm for semiinfinite programming (SIP). For this algorithm, we establish a perturbation theorem under mild conditions. As a corollary of the perturbation theorem, we obtain the global convergence result, that is, any accumulation point of the sequence generated by the algorithm is the solution of SIP. We get this global convergence result without any boundedness condition or coercive condition. Another corollary of the perturbation theorem shows that the perturbation function at zero point is lower semi-continuous if and only if the algorithm forces the sequence of objective function convergence to the optimal value of SIP. Finally, numerical results are given.
引用
收藏
页数:11
相关论文
共 18 条
[1]  
[Anonymous], 1969, Optimization
[2]   Global solution of semi-infinite programs [J].
Bhattacharjee, B ;
Lemonidis, P ;
Green, WH ;
Barton, PI .
MATHEMATICAL PROGRAMMING, 2005, 103 (02) :283-307
[3]   Numerical comparison of Augmented Lagrangian algorithms for nonconvex problems [J].
Birgin, EG ;
Castillo, RA ;
Martínez, JM .
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2005, 31 (01) :31-55
[4]   A GLOBALLY CONVERGENT AUGMENTED LAGRANGIAN ALGORITHM FOR OPTIMIZATION WITH GENERAL CONSTRAINTS AND SIMPLE BOUNDS [J].
CONN, AR ;
GOULD, NIM ;
TOINT, PL .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1991, 28 (02) :545-572
[5]   AN EXACT PENALTY-FUNCTION FOR SEMI-INFINITE PROGRAMMING [J].
CONN, AR ;
GOULD, NIM .
MATHEMATICAL PROGRAMMING, 1987, 37 (01) :19-40
[6]   The smoothed-penalty algorithm for state constrained optimal control problems for partial differential equations [J].
Gugat, Martin ;
Herty, Michael .
OPTIMIZATION METHODS & SOFTWARE, 2010, 25 (04) :573-599
[7]  
Hestenes M. R., 1969, Journal of Optimization Theory and Applications, V4, P303, DOI 10.1007/BF00927673
[8]   SEMIINFINITE PROGRAMMING - THEORY, METHODS, AND APPLICATIONS [J].
HETTICH, R ;
KORTANEK, KO .
SIAM REVIEW, 1993, 35 (03) :380-429
[9]   A smoothing newton method for semi-infinite programming [J].
Li, DH ;
Qi, LQ ;
Tam, J ;
Wu, SY .
JOURNAL OF GLOBAL OPTIMIZATION, 2004, 30 (2-3) :169-194
[10]   A smoothing projected Newton-type algorithm for semi-infinite programming [J].
Qi, Liqun ;
Ling, Chen ;
Tong, Xiaojiao ;
Zhou, Guanglu .
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2009, 42 (01) :1-30