Pose-based action recognition has always been an important research field in computer vision. However, most existing pose-based methods are built upon human skeleton data, which cannot be used to exploit the feature of the motion-related object, i.e., a crucial clue of discriminating human actions. To address this issue, we propose a novel pose-flow relational model, which can benefit from both pose dynamics and optical flow. First, we introduce a pose estimation module to extract the skeleton data of the key person from the raw video. Second, a hierarchical pose-based network is proposed to effectively explore the rich spatial-temporal features of human skeleton positions. Third, we embed an inflated 3D network to capture the subtle cues of the motion-related object from optical flow. Additionally, we evaluate our model on four popular action recognition benchmarks (HMDB-51, JHMDB, sub-JHMDB, and SYSU 3D). Experimental results demonstrate that the proposed model outperforms the existing pose-based methods in human action recognition. (c) 2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).