ON THE WELL-POSEDNESS OF THE FULL LOW MACH NUMBER LIMIT SYSTEM IN GENERAL CRITICAL BESOV SPACES

被引:12
作者
Danchin, Raphael [1 ]
Liao, Xian [1 ]
机构
[1] Univ Paris Est Creteil, LAMA UMR 8050, F-94010 Creteil, France
关键词
Compressible fluids; low Mach number; critical regularity; Navier-Stokes; COMPRESSIBLE EULER EQUATION; INCOMPRESSIBLE LIMIT; GLOBAL EXISTENCE; SINGULAR LIMITS; FLOWS;
D O I
10.1142/S0219199712500228
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This work is devoted to the well-posedness issue for the low Mach number limit system obtained from the full compressible Navier-Stokes system, in the whole space R-d with d >= 2. In the case where the initial temperature (or density) is close to a positive constant, we establish the local existence and uniqueness of a solution in critical homogeneous Besov spaces of type. (B) Over dot(p, 1)(s). If, in addition, the initial velocity is small then we show that the solution exists for all positive time. In the fully nonhomogeneous case, we establish the local well-posedness in nonhomogeneous Besov spaces B-p, 1(s) (still with critical regularity) for arbitrarily large data with positive initial temperature. Our analysis strongly relies on the use of a modified divergence-free velocity which allows to reduce the system to a nonlinear coupling between a parabolic equation and some evolutionary Stokes system. As in the recent work by Abidi and Paicu [Existence globale pour un fluide inhomogene, Ann. Inst. Fourier 57(3) (2007) 883-917]. Concerning the density-dependent incompressible Navier-Stokes equations, the Lebesgue exponents of the Besov spaces for the temperature and the (modified) velocity, need not be the same. This enables us to consider initial data in Besov spaces with a negative index of regularity.
引用
收藏
页数:47
相关论文
共 30 条
[1]   Global existence for an nonhomogeneous fluid [J].
Abidi, Hammadi ;
Paicu, Marius .
ANNALES DE L INSTITUT FOURIER, 2007, 57 (03) :883-917
[2]   Low mach number limit of the full Navier-Stokes equations [J].
Alazard, T .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2006, 180 (01) :1-73
[3]   Low Mach number flows and combustion [J].
Alazard, Thomas .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2006, 38 (04) :1186-1213
[4]  
Bahouri H., 2011, GRUNDLEHREN MATH WIS, V343
[5]  
BONY JM, 1981, ANN SCI ECOLE NORM S, V14, P209
[6]   Global existence in critical spaces for compressible Navier-Stokes equations [J].
Danchin, R .
INVENTIONES MATHEMATICAE, 2000, 141 (03) :579-614
[7]   Uniform estimates for transport-diffusion equations [J].
Danchin, R. .
JOURNAL OF HYPERBOLIC DIFFERENTIAL EQUATIONS, 2007, 4 (01) :1-17
[8]   Density-dependent incompressible viscous fluids in critical spaces [J].
Danchin, R .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2003, 133 :1311-1334
[9]   Zero Mach number limit for compressible flows with periodic boundary conditions [J].
Danchin, R .
AMERICAN JOURNAL OF MATHEMATICS, 2002, 124 (06) :1153-1219
[10]   Zero Mach number limit in critical spaces for compressible Navier-Stokes equations [J].
Danchin, R .
ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2002, 35 (01) :27-75