Uniqueness of fast travelling fronts in reaction-diffusion equations with delay

被引:22
作者
Aguerrea, Maitere [1 ]
Trofimchuk, Sergei [1 ]
Valenzuela, Gabriel [1 ]
机构
[1] Univ Talca, Inst Matemat & Fis, Talca, Chile
来源
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2008年 / 464卷 / 2098期
关键词
time-delayed reaction-diffusion equation; monostable case; uniqueness; travelling front; single species population model;
D O I
10.1098/rspa.2008.0011
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We consider positive travelling fronts, u(t, x) = phi(nu.x + ct), phi(-infinity) = 0, phi(infinity) = kappa, of the equation u(t)(t, x) = Delta u(t, x) - u(t, x) + g(u(t-h, x)), x is an element of R(m). This equation is assumed to have exactly two non-negative equilibria: u(1)equivalent to 0 and u(2)equivalent to k>0, but the birth function g is an element of C(2)(R, R) may be non-monotone on [0, k]. We are therefore interested in the so-called monostable case of the time-delayed reaction - diffusion equation. Our main result shows that for every fixed and sufficiently large velocity c, the positive travelling front phi(nu.x + ct) is unique (modulo translations). Note that f may be non-monotone. To prove uniqueness, we introduce a small parameter epsilon = 1/c and realize a Lyapunov Schmidt reduction in a scale of Banach spaces.
引用
收藏
页码:2591 / 2608
页数:18
相关论文
共 22 条
[1]   Traveling wave fronts for generalized Fisher equations with spatio-temporal delays [J].
Ai, Shangbing .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 232 (01) :104-133
[2]  
Ambrosetti A., 1993, A primer of nonlinear analysis
[3]  
Chicone C., 1999, Evolution Semigroups in Dynamical Systems and Differential Equations
[4]   RUN FOR YOUR LIFE - NOTE ON THE ASYMPTOTIC SPEED OF PROPAGATION OF AN EPIDEMIC [J].
DIEKMANN, O .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1979, 33 (01) :58-73
[5]   Travelling waves for delayed reaction-diffusion equations with global response [J].
Faria, T ;
Huang, W ;
Wu, JH .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2006, 462 (2065) :229-261
[6]   Nonmonotone travelling waves in a single species reaction-diffusion equation with delay [J].
Faria, Teresa ;
Trofimchuk, Sergei .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2006, 228 (01) :357-376
[7]  
Gilding B H., 2004, Travelling Waves in Nonlinear Diffusion-Convection Reaction
[8]  
Gopalsamy K., 1998, UKR MATH J, V50, P3, DOI DOI 10.1007/BF02514684
[9]  
Gourley S.A., 2004, J. Math. Sci, V124, P5119, DOI [DOI 10.1023/B:JOTH.0000047249.39572.6D, 10.1023/B:JOTH.0000047249.39572.6d]
[10]   Halanay inequality, Yorke 3/2 stability criterion, and differential equations with maxima [J].
Ivanov, A ;
Liz, E ;
Trofimchuk, S .
TOHOKU MATHEMATICAL JOURNAL, 2002, 54 (02) :277-295