A review and analysis on influence of temperature and concentration of nanofluids on thermophysical properties, heat transfer and pumping power

被引:270
|
作者
Vajjha, Ravikanth S. [1 ]
Das, Debendra K. [1 ]
机构
[1] Univ Alaska Fairbanks, Fairbanks, AK 99775 USA
关键词
Convective heat transfer; Euler number; Friction factor; Mouromtseff number; Nanofluids; Nusselt number; Prandtl number; Reynolds number; Thermal diffusivity; Thermophysical properties; EFFECTIVE THERMAL-CONDUCTIVITY; TRANSFER ENHANCEMENT; FLOW; MODEL; SUSPENSIONS; CONVECTION; PARTICLES; VISCOSITY; TRANSPORT; LIQUID;
D O I
10.1016/j.ijheatmasstransfer.2012.03.048
中图分类号
O414.1 [热力学];
学科分类号
摘要
The Prandtl number, Reynolds number and Nusselt number are functions of thermophysical properties of nanofluids and these numbers strongly influence the convective heat transfer coefficient. The pressure loss and the required pumping power for a given amount of heat transfer depend on the Reynolds number of flow. The thermophysical properties vary with temperature and volumetric concentration of nanofluids. Therefore, a comprehensive analysis has been performed to evaluate the effects on the performance of nanofluids due to variations of density, specific heat, thermal conductivity and viscosity, which are functions of nanoparticle volume concentration and temperature. Two metallic oxides, aluminum oxide (Al2O3), copper oxide (CuO) and one nonmetallic oxide silicon dioxide (SiO2), dispersed in an ethylene glycol and water mixture (60:40 by weight) as the base fluid have been studied. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:4063 / 4078
页数:16
相关论文
共 50 条
  • [1] Thermophysical properties of nanofluids and their potential applications in heat transfer enhancement: A review
    Kalsi, Sujata
    Kumar, Sunil
    Kumar, Anil
    Alam, Tabish
    Dobrota, Dan
    ARABIAN JOURNAL OF CHEMISTRY, 2023, 16 (11)
  • [2] A review on thermophysical properties of nanofluids and heat transfer applications
    Gupta, Munish
    Singh, Vinay
    Kumar, Rajesh
    Said, Z.
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2017, 74 : 638 - 670
  • [3] Experimental characterization and modeling of thermophysical properties of nanofluids at high temperature conditions for heat transfer applications
    Mondragon, Rosa
    Segarra, Carmen
    Martinez-Cuenca, Raul
    Enrique Julia, J.
    Carlos Jarque, Juan
    POWDER TECHNOLOGY, 2013, 249 : 516 - 529
  • [4] Thermophysical properties and heat transfer in mono and hybrid nanofluids with different base fluids: an overview
    Kanthimathi, T.
    Bhramara, P.
    Atgur, Vinay
    Rao, B. Nageswara
    Banapurmath, Nagaraj R.
    Sajjan, Ashok M.
    Badruddin, Irfan Anjum
    Kamangar, Sarfaraz
    Khan, T. M. Y.
    Baig, Rahmath Ulla
    Vadlamudi, Chandramouli
    Krishnappa, Sanjay
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2023, 149 (4) : 1649 - 1666
  • [5] Mechanisms proposed through experimental investigations on thermophysical properties and forced convective heat transfer characteristics of various nanofluids - A review
    Chandrasekar, M.
    Suresh, S.
    Senthilkumar, T.
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2012, 16 (06) : 3917 - 3938
  • [6] Effect of sonication characteristics on stability, thermophysical properties, and heat transfer of nanofluids: A comprehensive review
    Asadi, Amin
    Pourfattah, Farzad
    Szilagyi, Imre Miklos
    Afrand, Masoud
    Zyla, Gawel
    Ahn, Ho Seon
    Wongwises, Somchai
    Hoang Minh Nguyen
    Arabkoohsar, Ahmad
    Mahian, Omid
    ULTRASONICS SONOCHEMISTRY, 2019, 58
  • [7] Reliable prediction of thermophysical properties of nanofluids for enhanced heat transfer in process industry: a perspective on bridging the gap between experiments, CFD and machine learning
    Ullah, Atta
    Kilic, Mustafa
    Habib, Ghulam
    Sahin, Mahir
    Khalid, Rehan Zubair
    Sanaullah, Khairuddin
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2023, 148 (12) : 5859 - 5881
  • [8] Effect of Temperature and Nanoparticle Concentration on Free Convective Heat Transfer of Nanofluids
    Cieslinski, Janusz T.
    Smolen, Slawomir
    Sawicka, Dorota
    ENERGIES, 2021, 14 (12)
  • [9] Thermophysical and electrokinetic properties of nanofluids - A critical review
    Murshed, S. M. S.
    Leong, K. C.
    Yang, C.
    APPLIED THERMAL ENGINEERING, 2008, 28 (17-18) : 2109 - 2125
  • [10] Temperature Dependency of Thermophysical Properties in Convective Heat Transfer Enhancement in Nanofluids
    Li, Wenhao
    Nakayama, Akira
    JOURNAL OF THERMOPHYSICS AND HEAT TRANSFER, 2015, 29 (03) : 504 - 512