Local Learning Matters: Rethinking Data Heterogeneity in Federated Learning

被引:82
作者
Mendieta, Matias [1 ]
Yang, Taojiannan [1 ]
Wang, Pu [2 ]
Lee, Minwoo [2 ]
Ding, Zhengming [3 ]
Chen, Chen [1 ]
机构
[1] Univ Cent Florida, Ctr Res Comp Vis, Orlando, FL 32816 USA
[2] Univ N Carolina, Dept Comp Sci, Charlotte, NC USA
[3] Tulane Univ, Dept Comp Sci, New Orleans, LA 70118 USA
来源
2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR) | 2022年
基金
美国国家科学基金会;
关键词
D O I
10.1109/CVPR52688.2022.00821
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Federated learning (FL) is a promising strategy for performing privacy-preserving, distributed learning with a network of clients (i.e., edge devices). However, the data distribution among clients is often non-HD in nature, making efficient optimization difficult. To alleviate this issue, many FL algorithms focus on mitigating the effects of data heterogeneity across clients by introducing a variety of proximal terms, some incurring considerable compute and/or memory overheads, to restrain local updates with respect to the global model. Instead, we consider rethinking solutions to data heterogeneity in FL with a focus on local learning generality rather than proximal restriction. To this end, we first present a systematic study informed by second-order indicators to better understand algorithm effectiveness in FL. Interestingly, we find that standard regularization methods are surprisingly strong performers in mitigating data heterogeneity effects. Based on our findings, we further propose a simple and effective method, FedAlign, to overcome data heterogeneity and the pitfalls of previous methods. FedAlign achieves competitive accuracy with state-of-the-art FL methods across a variety of settings while minimizing computation and memory overhead.
引用
收藏
页码:8387 / 8396
页数:10
相关论文
共 36 条
  • [1] Alp Durmus, 2021, INT C LEARN REPR
  • [2] Solitaire AB stent-angioplasty for stenoses in perforator rich segments: A single-center experience
    Cao, Xiangyu
    Wang, Jun
    Tian, Chenglin
    Du, Zhihua
    Su, Hui
    Liu, Xinfeng
    Lv, Bin
    Yu, Shengyuan
    Chen, Xing
    Hui, Ferdinand
    [J]. INTERVENTIONAL NEURORADIOLOGY, 2020, 26 (05) : 608 - 614
  • [3] Chen XN, 2020, PR MACH LEARN RES, V119
  • [4] Ghiasi G, 2018, ADV NEUR IN, V31
  • [5] He C., 2020, ARXIV200713518
  • [6] He K., 2016, 2016 IEEE C COMP VIS, DOI [DOI 10.1109/CVPR.2016.90, 10.1109/CVPR.2016.90]
  • [7] Deep Networks with Stochastic Depth
    Huang, Gao
    Sun, Yu
    Liu, Zhuang
    Sedra, Daniel
    Weinberger, Kilian Q.
    [J]. COMPUTER VISION - ECCV 2016, PT IV, 2016, 9908 : 646 - 661
  • [9] Jiang YQ, 2020, ROUT FOC ECON FINANC, P4
  • [10] Advances and Open Problems in Federated Learning
    Kairouz, Peter
    McMahan, H. Brendan
    Avent, Brendan
    Bellet, Aurelien
    Bennis, Mehdi
    Bhagoji, Arjun Nitin
    Bonawitz, Kallista
    Charles, Zachary
    Cormode, Graham
    Cummings, Rachel
    D'Oliveira, Rafael G. L.
    Eichner, Hubert
    El Rouayheb, Salim
    Evans, David
    Gardner, Josh
    Garrett, Zachary
    Gascon, Adria
    Ghazi, Badih
    Gibbons, Phillip B.
    Gruteser, Marco
    Harchaoui, Zaid
    He, Chaoyang
    He, Lie
    Huo, Zhouyuan
    Hutchinson, Ben
    Hsu, Justin
    Jaggi, Martin
    Javidi, Tara
    Joshi, Gauri
    Khodak, Mikhail
    Konecny, Jakub
    Korolova, Aleksandra
    Koushanfar, Farinaz
    Koyejo, Sanmi
    Lepoint, Tancrede
    Liu, Yang
    Mittal, Prateek
    Mohri, Mehryar
    Nock, Richard
    Ozgur, Ayfer
    Pagh, Rasmus
    Qi, Hang
    Ramage, Daniel
    Raskar, Ramesh
    Raykova, Mariana
    Song, Dawn
    Song, Weikang
    Stich, Sebastian U.
    Sun, Ziteng
    Suresh, Ananda Theertha
    [J]. FOUNDATIONS AND TRENDS IN MACHINE LEARNING, 2021, 14 (1-2): : 1 - 210