Splines - A perfect fit for signal and image processing

被引:1129
作者
Unser, M [1 ]
机构
[1] Swiss Fed Inst Technol, CH-1015 Lausanne, Switzerland
关键词
D O I
10.1109/79.799930
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
[No abstract available]
引用
收藏
页码:22 / 38
页数:17
相关论文
共 113 条
[81]  
Strang G., 1971, Constructive Aspects of Functional Analysis, P796
[82]   ASYMPTOTIC ERROR EXPANSION OF WAVELET APPROXIMATIONS OF SMOOTH FUNCTIONS .2. [J].
SWELDENS, W ;
PIESSENS, R .
NUMERISCHE MATHEMATIK, 1994, 68 (03) :377-401
[83]   A pyramid approach to subpixel registration based on intensity [J].
Thevenaz, P ;
Ruttimann, UE ;
Unser, M .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 1998, 7 (01) :27-41
[84]  
THEVENAZ P, 1997, P IEEE INT C IM PROC
[85]  
THEVENAZ P, IN PRESS HDB MED IMA
[86]   TWO-DIMENSIONAL SPLINE INTERPOLATION FOR IMAGE-RECONSTRUCTION [J].
TORAICHI, K ;
YANG, S ;
KAMADA, M ;
MORI, R .
PATTERN RECOGNITION, 1988, 21 (03) :275-284
[87]   FAST B-SPLINE TRANSFORMS FOR CONTINUOUS IMAGE REPRESENTATION AND INTERPOLATION [J].
UNSER, M ;
ALDROUBI, A ;
EDEN, M .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1991, 13 (03) :277-285
[88]   A GENERAL SAMPLING THEORY FOR NONIDEAL ACQUISITION DEVICES [J].
UNSER, M ;
ALDROUBI, A .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1994, 42 (11) :2915-2925
[89]   POLYNOMIAL SPLINE SIGNAL APPROXIMATIONS - FILTER DESIGN AND ASYMPTOTIC EQUIVALENCE WITH SHANNONS SAMPLING THEOREM [J].
UNSER, M ;
ALDROUBI, A ;
EDEN, M .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1992, 38 (01) :95-103
[90]   ENLARGEMENT OR REDUCTION OF DIGITAL IMAGES WITH MINIMUM LOSS OF INFORMATION [J].
UNSER, M ;
ALDROUBI, A ;
EDEN, M .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 1995, 4 (03) :247-258