Kernel Attention Network for Single Image Super-Resolution

被引:24
|
作者
Zhang, Dongyang [1 ,2 ]
Shao, Jie [1 ,2 ]
Shen, Heng Tao [1 ,2 ]
机构
[1] Univ Elect Sci & Technol China, Sch Comp Sci & Engn, Ctr Future Media, Chengdu 611731, Peoples R China
[2] Sichuan Artificial Intelligence Res Inst, Yibin 644000, Peoples R China
基金
中国国家自然科学基金;
关键词
Image super-resolution; kernel attention; receptive field; multi-scale features; CONVOLUTIONAL NETWORK;
D O I
10.1145/3398685
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Recently, attention mechanisms have shown a developing tendency toward convolutional neural network (CNN), and some representative attention mechanisms, i.e., channel attention (CA) and spatial attention (SA) have been fully applied to single image super-resolution (SISR) tasks. However, the existing architectures directly apply these attention mechanisms to SISR without much consideration of the nature characteristic, resulting in less strong representational power. In this article, we propose a novel kernel attention module (KAM) for SISR, which enables the network to adjust its receptive field size corresponding to various scales of input by dynamically selecting the appropriate kernel. Based on this, we stack multiple kernel attention modules with group and residual connection to constitute a novel architecture for SISR, which enables our network to learn more distinguishing representations through filtering the information under different receptive fields. Thus, our network is more sensitive to multi-scale features, which enables our single network to deal with multi-scale SR task by predefining the upscaling modules. Besides, other attention mechanisms in super-resolution are also investigated and illustrated in detail in this article. Thanks to the kernel attention mechanism, the extensive benchmark evaluation shows that our method outperforms the other state-of-theart methods.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] A Novel Attention Enhanced Dense Network for Image Super-Resolution
    Niu, Zhong-Han
    Zhou, Yang-Hao
    Yang, Yu-Bin
    Fan, Jian-Cong
    MULTIMEDIA MODELING (MMM 2020), PT I, 2020, 11961 : 568 - 580
  • [32] Structured Fusion Attention Network for Image Super-Resolution Reconstruction
    Dai, Yaonan
    Yu, Jiuyang
    Hu, Tianhao
    Lu, Yang
    Zheng, Xiaotao
    IEEE ACCESS, 2022, 10 : 31896 - 31906
  • [33] Dynamic dual attention iterative network for image super-resolution
    Feng, Hao
    Wang, Liejun
    Cheng, Shuli
    Du, Anyu
    Li, Yongming
    APPLIED INTELLIGENCE, 2022, 52 (07) : 8189 - 8208
  • [34] A novel attention-enhanced network for image super-resolution
    Bo, Yangyu
    Wu, Yongliang
    Wang, Xuejun
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 130
  • [35] Frequency-Separated Attention Network for Image Super-Resolution
    Qu, Daokuan
    Li, Liulian
    Yao, Rui
    APPLIED SCIENCES-BASEL, 2024, 14 (10):
  • [36] Learning Dynamic Generative Attention for Single Image Super-Resolution
    Chen, Rui
    Zhang, Yan
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (12) : 8368 - 8382
  • [37] Single Image Super-Resolution Using Feedback Attention Networks
    Zhang, Juntao
    Dong, Hongbin
    Huang, Ruolin
    2020 CHINESE AUTOMATION CONGRESS (CAC 2020), 2020, : 2808 - 2814
  • [38] Channel attention and residual concatenation network for image super-resolution
    Cai T.-J.
    Peng X.-Y.
    Shi Y.-P.
    Huang J.
    Peng, Xiao-Yu (pengxy96@qq.com), 1600, Chinese Academy of Sciences (29): : 142 - 151
  • [39] Memory Recursive Network for Single Image Super-Resolution
    Liu, Jie
    Zou, Minqiang
    Tang, Jie
    Wu, Gangshan
    MM '20: PROCEEDINGS OF THE 28TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, 2020, : 2202 - 2210
  • [40] Dual contrastive attention-guided deformable convolutional network for single image super-resolution
    Qiao, Fengjuan
    Zhub, Yonggui
    Li, Guofang
    Li, Bin
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2024, 100