Kernel Attention Network for Single Image Super-Resolution

被引:24
|
作者
Zhang, Dongyang [1 ,2 ]
Shao, Jie [1 ,2 ]
Shen, Heng Tao [1 ,2 ]
机构
[1] Univ Elect Sci & Technol China, Sch Comp Sci & Engn, Ctr Future Media, Chengdu 611731, Peoples R China
[2] Sichuan Artificial Intelligence Res Inst, Yibin 644000, Peoples R China
基金
中国国家自然科学基金;
关键词
Image super-resolution; kernel attention; receptive field; multi-scale features; CONVOLUTIONAL NETWORK;
D O I
10.1145/3398685
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Recently, attention mechanisms have shown a developing tendency toward convolutional neural network (CNN), and some representative attention mechanisms, i.e., channel attention (CA) and spatial attention (SA) have been fully applied to single image super-resolution (SISR) tasks. However, the existing architectures directly apply these attention mechanisms to SISR without much consideration of the nature characteristic, resulting in less strong representational power. In this article, we propose a novel kernel attention module (KAM) for SISR, which enables the network to adjust its receptive field size corresponding to various scales of input by dynamically selecting the appropriate kernel. Based on this, we stack multiple kernel attention modules with group and residual connection to constitute a novel architecture for SISR, which enables our network to learn more distinguishing representations through filtering the information under different receptive fields. Thus, our network is more sensitive to multi-scale features, which enables our single network to deal with multi-scale SR task by predefining the upscaling modules. Besides, other attention mechanisms in super-resolution are also investigated and illustrated in detail in this article. Thanks to the kernel attention mechanism, the extensive benchmark evaluation shows that our method outperforms the other state-of-theart methods.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Lightweight dynamic attention network for single thermal image super-resolution
    Zhang, Haikun
    Hu, Yueli
    SIGNAL IMAGE AND VIDEO PROCESSING, 2024, 18 (03) : 2195 - 2206
  • [32] CVANet: Cascaded visual attention network for single image super-resolution
    Zhang, Weidong
    Zhao, Wenyi
    Li, Jia
    Zhuang, Peixian
    Sun, Haihan
    Xu, Yibo
    Li, Chongyi
    NEURAL NETWORKS, 2024, 170 : 622 - 634
  • [33] HRAN: Hybrid Residual Attention Network for Single Image Super-Resolution
    Muqeet, Abdul
    Bin Iqbal, Md Tauhid
    Bae, Sung-Ho
    IEEE ACCESS, 2019, 7 : 137020 - 137029
  • [34] Mixed Attention Densely Residual Network for Single Image Super-Resolution
    Zhou, Jingjun
    Liu, Jing
    Li, Jingbing
    Huang, Mengxing
    Cheng, Jieren
    Chen, Yen-Wei
    Xu, Yingying
    Nawaz, Saqib Ali
    COMPUTER SYSTEMS SCIENCE AND ENGINEERING, 2021, 39 (01): : 133 - 146
  • [35] Single Image Super-Resolution Using Deep Hierarchical Attention Network
    Zhao, Fei
    Chen, Rui
    Li, Yuan
    PROCEEDINGS OF 2020 5TH INTERNATIONAL CONFERENCE ON MULTIMEDIA AND IMAGE PROCESSING (ICMIP 2020), 2020, : 80 - 85
  • [36] Second-order Attention Network for Single Image Super-Resolution
    Dai, Tao
    Cai, Jianrui
    Zhang, Yongbing
    Xia, Shu-Tao
    Zhang, Lei
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 11057 - 11066
  • [37] Novel Channel Attention Residual Network for Single Image Super-Resolution
    Shi W.
    Du H.
    Mei W.
    Journal of Beijing Institute of Technology (English Edition), 2020, 29 (03): : 345 - 353
  • [38] LKASR: Large kernel attention for lightweight image super-resolution
    Feng, Hao
    Wang, Liejun
    Li, Yongming
    Du, Anyu
    KNOWLEDGE-BASED SYSTEMS, 2022, 252
  • [39] Asymmetric Large Kernel Distillation Network for efficient single image super-resolution
    Qu, Daokuan
    Ke, Yuyao
    FRONTIERS IN NEUROSCIENCE, 2024, 18
  • [40] Deep Super-Resolution Network for Single Image Super-Resolution with Realistic Degradations
    Umer, Rao Muhammad
    Foresti, Gian Luca
    Micheloni, Christian
    ICDSC 2019: 13TH INTERNATIONAL CONFERENCE ON DISTRIBUTED SMART CAMERAS, 2019,