Kernel Attention Network for Single Image Super-Resolution

被引:24
|
作者
Zhang, Dongyang [1 ,2 ]
Shao, Jie [1 ,2 ]
Shen, Heng Tao [1 ,2 ]
机构
[1] Univ Elect Sci & Technol China, Sch Comp Sci & Engn, Ctr Future Media, Chengdu 611731, Peoples R China
[2] Sichuan Artificial Intelligence Res Inst, Yibin 644000, Peoples R China
基金
中国国家自然科学基金;
关键词
Image super-resolution; kernel attention; receptive field; multi-scale features; CONVOLUTIONAL NETWORK;
D O I
10.1145/3398685
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Recently, attention mechanisms have shown a developing tendency toward convolutional neural network (CNN), and some representative attention mechanisms, i.e., channel attention (CA) and spatial attention (SA) have been fully applied to single image super-resolution (SISR) tasks. However, the existing architectures directly apply these attention mechanisms to SISR without much consideration of the nature characteristic, resulting in less strong representational power. In this article, we propose a novel kernel attention module (KAM) for SISR, which enables the network to adjust its receptive field size corresponding to various scales of input by dynamically selecting the appropriate kernel. Based on this, we stack multiple kernel attention modules with group and residual connection to constitute a novel architecture for SISR, which enables our network to learn more distinguishing representations through filtering the information under different receptive fields. Thus, our network is more sensitive to multi-scale features, which enables our single network to deal with multi-scale SR task by predefining the upscaling modules. Besides, other attention mechanisms in super-resolution are also investigated and illustrated in detail in this article. Thanks to the kernel attention mechanism, the extensive benchmark evaluation shows that our method outperforms the other state-of-theart methods.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Pyramid Separable Channel Attention Network for Single Image Super-Resolution
    Ma, Congcong
    Mi, Jiaqi
    Gao, Wanlin
    Tao, Sha
    CMC-COMPUTERS MATERIALS & CONTINUA, 2024, 80 (03): : 4687 - 4701
  • [22] Novel Channel Attention Residual Network for Single Image Super-Resolution
    Wenling Shi
    Huiqian Du
    Wenbo Mei
    JournalofBeijingInstituteofTechnology, 2020, 29 (03) : 345 - 353
  • [23] Single-image super-resolution with multilevel residual attention network
    Ding Qin
    Xiaodong Gu
    Neural Computing and Applications, 2020, 32 : 15615 - 15628
  • [24] Dual-path attention network for single image super-resolution
    Huang, Zhiyong
    Li, Wenbin
    Li, Jinxin
    Zhou, Dengwen
    EXPERT SYSTEMS WITH APPLICATIONS, 2021, 169
  • [25] Adaptive Residual Channel Attention Network for Single Image Super-Resolution
    Cao, Kerang
    Liu, Yuqing
    Duan, Lini
    Xie, Tian
    SCIENTIFIC PROGRAMMING, 2020, 2020
  • [26] RSAN: Residual Subtraction and Attention Network for Single Image Super-Resolution
    Wei, Shuo
    Sun, Xin
    Zhao, Haoran
    Dong, Junyu
    2020 25TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2021, : 1890 - 1895
  • [27] Multi-attention augmented network for single image super-resolution
    Chen, Rui
    Zhang, Heng
    Liu, Jixin
    PATTERN RECOGNITION, 2022, 122
  • [28] CASCADE ATTENTION BLEND RESIDUAL NETWORK FOR SINGLE IMAGE SUPER-RESOLUTION
    Chen, Tianyu
    Xiao, Guoqiang
    Tang, Xiaoqin
    Han, Xianfeng
    Ma, Wenzhuo
    Gou, Xinye
    2021 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2021, : 559 - 563
  • [29] Residual Triplet Attention Network for Single-Image Super-Resolution
    Huang, Feng
    Wang, Zhifeng
    Wu, Jing
    Shen, Ying
    Chen, Liqiong
    ELECTRONICS, 2021, 10 (17)
  • [30] Lightweight dynamic attention network for single thermal image super-resolution
    Haikun Zhang
    Yueli Hu
    Signal, Image and Video Processing, 2024, 18 : 2195 - 2206