Online Robot Reference Trajectory Adaptation for Haptic Identification of Unknown Force Field

被引:2
作者
Huang, Dianye [1 ]
Yang, Chenguang [1 ]
Wang, Ning [2 ,3 ]
Annamalai, Andy [4 ]
Su, Chun-Yi [5 ]
机构
[1] South China Univ Technol, Coll Automat Sci & Engn, Key Lab Autonomous Syst & Networked Control, Guangzhou 510640, Guangdong, Peoples R China
[2] Plymouth Univ, Ctr Robot & Neural Syst, Plymouth PL4 8AA, Devon, England
[3] Chinese Univ Hong Kong, Dept Comp Sci & Engn, Hong Kong, Hong Kong, Peoples R China
[4] Univ Highlands & Isl, Moray Coll, Inverness, Scotland
[5] Guangdong Univ Technol, Sch Automat, Guangzhou 510006, Guangdong, Peoples R China
关键词
Haptic identification; interaction control; online adaptation; trajectory adaptation; unknown forcefield; ITERATIVE LEARNING-CONTROL; IMPEDANCE CONTROL; UNSTABLE DYNAMICS; MANIPULATORS; TRACKING; MICROGRIPPER; ENVIRONMENT; MODEL;
D O I
10.1007/s12555-017-0019-0
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, a novel online reference trajectory adaptation algorithm is developed, which aims to balance the interactive force and the deviation when the robots interact with an unknown environment. The algorithm first estimates the online parameters of the environmental dynamic model using the Lyapunov-based method. The desired trajectory is then derived by obtaining a tradeoff between the cost of strictly tracking the reference trajectory and the cost of tracking deviation. Simulation studies are carried out to verify the validity of the proposed algorithm. Simulations show that the desired trajectory tends to go around the contour of the force field when more weight is placed on the cost of interaction force, which can be used for haptic identification; identifying contours of the force field.
引用
收藏
页码:318 / 326
页数:9
相关论文
共 27 条
[1]  
[Anonymous], ITERATIVE LEARNING C
[2]   Safety Control of Industrial Robots Based on a Distributed Distance Sensor [J].
Avanzini, Giovanni Buizza ;
Ceriani, Nicola Maria ;
Zanchettin, Andrea Maria ;
Rocco, Paolo ;
Bascetta, Luca .
IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2014, 22 (06) :2127-2140
[3]   The central nervous system stabilizes unstable dynamics by learning optimal impedance [J].
Burdet, E ;
Osu, R ;
Franklin, DW ;
Milner, TE ;
Kawato, M .
NATURE, 2001, 414 (6862) :446-449
[4]   Adaptive neural network tracking control of manipulators using quaternion feedback [J].
Cheng, Long ;
Hou, Zeng-Guang ;
Tan, Min .
2008 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, VOLS 1-9, 2008, :3371-3376
[5]   Haptic identification of surfaces as fields of force [J].
Chib, VS ;
Patton, JL ;
Lynch, KM ;
Mussa-Ivaldi, FA .
JOURNAL OF NEUROPHYSIOLOGY, 2006, 95 (02) :1068-1077
[6]  
Corke P.I., 2011, Robotics, Vision Control: Fundamental Algorithms in MATLAB
[7]   Adaptive position force control of robot manipulators without velocity measurements: Theory and experimentation [J].
deQueiroz, MS ;
Hu, J ;
Dawson, DM ;
Burg, T ;
Donepudi, SR .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 1997, 27 (05) :796-809
[8]   Endpoint stiffness of the arm is directionally tuned to instability in the environment [J].
Franklin, David W. ;
Liaw, Gary ;
Milner, Theodore E. ;
Osu, Rieko ;
Burdet, Etienne ;
Kawato, Mitsuo .
JOURNAL OF NEUROSCIENCE, 2007, 27 (29) :7705-7716
[9]   Adaptation to stable and unstable dynamics achieved by combined impedance control and inverse dynamics model [J].
Franklin, DW ;
Osu, R ;
Burdet, E ;
Kawato, M ;
Milner, TE .
JOURNAL OF NEUROPHYSIOLOGY, 2003, 90 (05) :3270-3282
[10]   IMPEDANCE CONTROL - AN APPROACH TO MANIPULATION .1. THEORY [J].
HOGAN, N .
JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME, 1985, 107 (01) :1-7