Landau gauge ghost propagator and running coupling in SU(2) lattice gauge theory

被引:10
作者
Bornyakov, V. G. [1 ,2 ,3 ]
Ilgenfritz, E. -M. [4 ]
Litwinski, C. [5 ]
Mueller-Preussker, M. [5 ]
Mitrjushkin, V. K. [1 ,4 ]
机构
[1] Kurchatov Inst, Inst High Energy Phys NRC, Protvino 142281, Russia
[2] Inst Theoret & Expt Phys, Moscow 117259, Russia
[3] Far Eastern Fed Univ, Sch Biomed, Vladivostok 690950, Russia
[4] BLTP, Joint Inst Nucl Res, Dubna 141980, Russia
[5] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany
来源
PHYSICAL REVIEW D | 2015年 / 92卷 / 07期
关键词
YANG-MILLS THEORY; INFRARED BEHAVIOR; GLUON PROPAGATOR; GRIBOV COPIES; COLOR CONFINEMENT; GREEN-FUNCTIONS; QCD; EXPONENTS;
D O I
10.1103/PhysRevD.92.074505
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We study finite (physical) volume and scaling violation effects of the Landau gauge ghost propagator as well as of the running coupling alpha(s)(p) in the SU(2) lattice gauge theory. We consider lattices with physical linear sizes between aL similar or equal to 3 and aL similar or equal to 7 fm and values of lattice spacing between a = 0.2 and a = 0.07 fm. To fix the gauge we apply an efficient gauge fixing method aimed at finding extrema as close as possible to the global maximum of the gauge functional. We find finite volume effects to be small for the lattice size aL similar or equal to 3 fm at momenta vertical bar p vertical bar greater than or similar to 0.6 GeV. For the same lattice size we study extrapolations to the continuum limit of the ghost dressing function as well as for the running coupling with momenta chosen between vertical bar p vertical bar = 0.41 and vertical bar p vertical bar = 3.2 GeV. We present fit formulas for the continuum limit of both observables in this momentum range. Our results testify in favor of the decoupling behavior in the infrared limit.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Strong-coupling study of the Gribov ambiguity in lattice Landau gauge
    Axel Maas
    Jan M. Pawlowski
    Daniel Spielmann
    André Sternbeck
    Lorenz von Smekal
    The European Physical Journal C, 2010, 68 : 183 - 195
  • [32] Lattice Landau gauge photon propagator for 4D compact QED
    Loveridge, Lee C.
    Oliveira, Orlando
    Silva, Paulo J.
    PHYSICAL REVIEW D, 2021, 103 (09)
  • [33] Ginzburg-Landau equation from SU(2) gauge field theory
    Dzhunushaliev, V
    Singleton, D
    MODERN PHYSICS LETTERS A, 2003, 18 (14) : 955 - 965
  • [34] On the Landau-gauge adjoint quark propagator
    August, Daniel
    Maas, Axel
    JOURNAL OF HIGH ENERGY PHYSICS, 2013, (07):
  • [35] Infrared behavior and Gribov ambiguity in SU(2) lattice gauge theory
    Bornyakov, V. G.
    Mitrjushkin, V. K.
    Mueller-Preussker, M.
    PHYSICAL REVIEW D, 2009, 79 (07):
  • [36] QUARK CONFINEMENT STUDY FROM SU(2) LATTICE GAUGE THEORY
    Chimchinda, Songvudhi
    SURANAREE JOURNAL OF SCIENCE AND TECHNOLOGY, 2009, 16 (04): : 325 - 335
  • [37] Colorful vortex intersections in SU(2) lattice gauge theory and their infuences on chiral properties
    Nejad, Seyed Mohsen Hosseini
    Faber, Manfried
    JOURNAL OF HIGH ENERGY PHYSICS, 2017, (09):
  • [38] No-pole condition in Landau gauge: Properties of the Gribov ghost form factor and a constraint on the 2d gluon propagator
    Cucchieri, Attilio
    Dudal, David
    Vandersickel, Nele
    PHYSICAL REVIEW D, 2012, 85 (08):
  • [39] Colorful plane vortices and chiral symmetry breaking in SU(2) lattice gauge theory
    Nejad, Seyed Mohsen
    Faber, Manfried
    Hoellwieser, Roman
    JOURNAL OF HIGH ENERGY PHYSICS, 2015, (10):
  • [40] Mass gap in the weak coupling limit of (2+1)-dimensional SU(2) lattice gauge theory
    Anishetty, Ramesh
    Sreeraj, T. P.
    PHYSICAL REVIEW D, 2018, 97 (07)