Landau gauge ghost propagator and running coupling in SU(2) lattice gauge theory

被引:10
|
作者
Bornyakov, V. G. [1 ,2 ,3 ]
Ilgenfritz, E. -M. [4 ]
Litwinski, C. [5 ]
Mueller-Preussker, M. [5 ]
Mitrjushkin, V. K. [1 ,4 ]
机构
[1] Kurchatov Inst, Inst High Energy Phys NRC, Protvino 142281, Russia
[2] Inst Theoret & Expt Phys, Moscow 117259, Russia
[3] Far Eastern Fed Univ, Sch Biomed, Vladivostok 690950, Russia
[4] BLTP, Joint Inst Nucl Res, Dubna 141980, Russia
[5] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany
来源
PHYSICAL REVIEW D | 2015年 / 92卷 / 07期
关键词
YANG-MILLS THEORY; INFRARED BEHAVIOR; GLUON PROPAGATOR; GRIBOV COPIES; COLOR CONFINEMENT; GREEN-FUNCTIONS; QCD; EXPONENTS;
D O I
10.1103/PhysRevD.92.074505
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We study finite (physical) volume and scaling violation effects of the Landau gauge ghost propagator as well as of the running coupling alpha(s)(p) in the SU(2) lattice gauge theory. We consider lattices with physical linear sizes between aL similar or equal to 3 and aL similar or equal to 7 fm and values of lattice spacing between a = 0.2 and a = 0.07 fm. To fix the gauge we apply an efficient gauge fixing method aimed at finding extrema as close as possible to the global maximum of the gauge functional. We find finite volume effects to be small for the lattice size aL similar or equal to 3 fm at momenta vertical bar p vertical bar greater than or similar to 0.6 GeV. For the same lattice size we study extrapolations to the continuum limit of the ghost dressing function as well as for the running coupling with momenta chosen between vertical bar p vertical bar = 0.41 and vertical bar p vertical bar = 3.2 GeV. We present fit formulas for the continuum limit of both observables in this momentum range. Our results testify in favor of the decoupling behavior in the infrared limit.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Thermal monopoles in the SU(2) gauge theory on a lattice
    V. G. Bornyakov
    A. G. Kononenko
    Moscow University Physics Bulletin, 2014, 69 : 287 - 292
  • [22] Evolution of the coupling constant in SU(2) lattice gauge theory with two adjoint fermions
    Hietanen, Ari J.
    Rummukainen, Kari
    Tuominen, Kimmo
    PHYSICAL REVIEW D, 2009, 80 (09):
  • [23] Two-point functions of quenched Lattice QCD in Numerical Stochastic Perturbation Theory. (I) The ghost propagator in Landau gauge
    Di Renzo, F.
    Ilgenfritz, E. -M.
    Perlt, H.
    Schiller, A.
    Torrero, C.
    NUCLEAR PHYSICS B, 2010, 831 (1-2) : 262 - 284
  • [24] Landau gauge gluon and ghost propagators from lattice QCD
    Ilgenfritz, E-M
    Mueller-Preussker, M.
    Sternbeck, A.
    Schiller, A.
    Bogolubsky, I. L.
    BRAZILIAN JOURNAL OF PHYSICS, 2007, 37 (1B) : 193 - 200
  • [25] THE FOUR-GLUON VERTEX AND THE RUNNING COUPLING IN LANDAU GAUGE YANG-MILLS THEORY
    Kellermann, Christian
    Fischer, Christian S.
    INTERNATIONAL MEETING: EXCITED QCD, 2009, 2 (02): : 295 - 300
  • [26] Analytic structure of the lattice Landau gauge gluon and ghost propagators
    Falcao, Alexandre F.
    Oliveira, Orlando
    Silva, Paulo J.
    PHYSICAL REVIEW D, 2020, 102 (11)
  • [27] Analytic structure of Landau gauge ghost and gluon propagators
    Strauss, Stefan
    Fischer, Christian S.
    Kellermann, Christian
    PROGRESS IN PARTICLE AND NUCLEAR PHYSICS, 2012, 67 (02) : 239 - 244
  • [28] SU (2) lattice gauge theory simulations on Fermi GPUs
    Cardoso, Nuno
    Bicudo, Pedro
    JOURNAL OF COMPUTATIONAL PHYSICS, 2011, 230 (10) : 3998 - 4010
  • [29] Gluon-propagator functional form in the Landau gauge in SU(3) lattice QCD: Yukawa-type gluon propagator and anomalous gluon spectral function
    Iritani, Takumi
    Suganuma, Hideo
    Iida, Hideaki
    PHYSICAL REVIEW D, 2009, 80 (11):
  • [30] Nonperturbative improvement of SU(2) lattice gauge theory with adjoint or fundamental flavours
    Karavirta, Tuomas
    Mykkanen, Anne
    Rantaharju, Jarno
    Rummukainen, Kari
    Tuominen, Kimmo
    JOURNAL OF HIGH ENERGY PHYSICS, 2011, (06):