Macdonald polynomials and algebraic integrability

被引:44
作者
Chalykh, OA [1 ]
机构
[1] Loughborough Univ Technol, Dept Math Sci, Loughborough LE11 3TU, Leics, England
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1006/aima.2001.2033
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct explicitly (nonpolynomial) eigenfunctions of the difference operators by Macdonald in the case t = q(k), k epsilon Z. This leads to a new, more elementary proof of several Macdonald conjectures, proved first by Cherednik. We also establish the algebraic integrability of Macdonald operators at t = q(k) (k epsilon Z), generalizing the result of Etingof and Styrkas. Our approach works uniformly for all root systems including the BCn case and related Koornwinder polynomials. Moreover, we apply it for a certain deformation of the A(n) root system where the previously known methods do not work. (C) 2002 Elsevier Science (USA).
引用
收藏
页码:193 / 259
页数:67
相关论文
共 46 条
[21]   Residue construction of Hecke algebras [J].
Ginzburg, V ;
Kapranov, M ;
Vasserot, E .
ADVANCES IN MATHEMATICS, 1997, 128 (01) :1-19
[22]  
HECKMAN GJ, 1987, COMPOS MATH, V64, P353
[23]  
HECKMAN GJ, 1987, COMPOS MATH, V64, P329
[24]   AN ELEMENTARY APPROACH TO THE HYPERGEOMETRIC SHIFT-OPERATORS OF OPDAM [J].
HECKMAN, GJ .
INVENTIONES MATHEMATICAE, 1991, 103 (02) :341-350
[25]   On an inner product in modular tensor categories [J].
Kirillov, AA .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 9 (04) :1135-1169
[26]   Lectures on affine Hecke algebras and Macdonald's conjectures [J].
Kirillov, AA .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1997, 34 (03) :251-292
[27]  
Koornwinder T.H., 1992, Contemp. Math., V138, P189, DOI [10.1090/conm/138/1199128., DOI 10.1090/CONM/138/1199128]
[28]  
KOORNWINDER TH, 1988, UNPUB
[29]  
KRICHEVER I, 1977, USP MAT NAUK, V32, P180
[30]  
Macdonald I. G., 1995, Oxford Classic Texts in the Physical Sciences, V2nd