Semilinear hyperbolic boundary value problem for linear elasticity equations

被引:2
作者
Rahmoune, A. [1 ]
Benabderrahmane, B. [1 ]
机构
[1] Laghouat Univ 03000, LIM, Laghouat, Algeria
来源
APPLIED MATHEMATICS & INFORMATION SCIENCES | 2013年 / 7卷 / 04期
关键词
Compactness; Existence; Gronwall's inequality; linear elasticity; Uniqueness of solution; Regularity; Semilinear hyperbolic equation; Variational problem;
D O I
10.12785/amis/070421
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Consider a semilinear hyperbolic boundary value problem associated to the linear elastic equations. Then, existence of a weak solution is established through compactness method. The uniqueness and the regularity of the solution have been gotten by eliminating some hypotheses that have been imposed by other authors for different particular problems.
引用
收藏
页码:1421 / 1428
页数:8
相关论文
共 50 条
[21]   INERTIAL MANIFOLDS FOR THE HYPERBOLIC RELAXATION OF SEMILINEAR PARABOLIC EQUATIONS [J].
Chepyzhov, Vladimir V. ;
Kostianko, Anna ;
Zelik, Sergey .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2019, 24 (03) :1115-1142
[22]   Regularity for Semilinear Neutral Hyperbolic Equations with Cosine Families [J].
Cho, Seong-Ho ;
Jeong, Jin-Mun .
MATHEMATICS, 2020, 8 (07)
[23]   Boundary element method for the Cauchy problem in linear elasticity [J].
Marin, L ;
Elliott, L ;
Ingham, DB ;
Lesnic, D .
ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2001, 25 (09) :783-793
[24]   GLOBAL WELL-POSEDNESS OF SEMILINEAR HYPERBOLIC EQUATIONS, PARABOLIC EQUATIONS AND SCHRODINGER EQUATIONS [J].
Xu, Runzhang ;
Chen, Yuxuan ;
Yang, Yanbing ;
Chen, Shaohua ;
Shen, Jihong ;
Yu, Tao ;
Xu, Zhengsheng .
ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2018,
[25]   Initial-Boundary-Value Problem for Inhomogeneous Degenerate Equations of Mixed Parabolic-Hyperbolic Type [J].
Sabitov K.B. ;
Sidorov S.N. .
Journal of Mathematical Sciences, 2019, 236 (6) :603-640
[26]   INITIAL-BOUNDARY VALUE PROBLEMS FOR DEGENERATE HYPERBOLIC EQUATIONS [J].
Kozhanov, A., I .
SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2021, 18 :43-53
[27]   Boundary Value Problems for Quasi-Hyperbolic Equations with Degeneration [J].
Kozhanov, A. I. ;
Spiridonova, N. R. .
MATHEMATICAL NOTES, 2022, 112 (5-6) :911-921
[28]   Boundary Value Problems for Quasi-Hyperbolic Equations with Degeneration [J].
A. I. Kozhanov ;
N. R. Spiridonova .
Mathematical Notes, 2022, 112 :911-921
[29]   A free boundary problem for discontinuous semilinear elliptic equations in convex ring [J].
Bensid, Sabri .
COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2025, 70 (02) :307-316
[30]   ON THE BOUNDARY VALUE PROBLEM FOR SOME QUASILINEAR EQUATIONS [J].
Guo, Yuxia ;
Liu, Xiangqing .
ADVANCES IN DIFFERENTIAL EQUATIONS, 2015, 20 (1-2) :1-22