Some connections and variational principle to the Finslerian scalar-tensor theory of gravitation

被引:14
作者
Stavrinos, PC [1 ]
Ikeda, S [1 ]
机构
[1] Univ Athens, Dept Math, Athens 15784, Greece
关键词
D O I
10.1016/S0034-4877(99)80164-5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A generalized scalar-tensor theory of the Finslerian gravitational field is constructed on the basis of the fibered bundle of a base manifold and consists of two G-numbers (Grassmannian noncommutative) y(+), y(-), playing the role of fibres. In the framework of our approach, we study: the connection structures, torsions, curvatures and the gravitational field equations derived from variational principles of the appropriate Lagrangian densities.
引用
收藏
页码:221 / 230
页数:10
相关论文
共 12 条
[1]  
Asanov G.S., 1982, AEQUATIONES MATH, V24, P207
[2]  
Asanov G.S., 1985, Finsler Geometry, Relativity and Gauge Theories
[3]   MACHS PRINCIPLE AND A RELATIVISTIC THEORY OF GRAVITATION [J].
BRANS, C ;
DICKE, RH .
PHYSICAL REVIEW, 1961, 124 (03) :925-&
[4]  
Connes A., 1994, NONCOMMUTATIVE GEOME
[5]   ON THE THEORY OF GRAVITATIONAL-FIELD NON-LOCALIZED BY THE INTERNAL VARIABLE .4. [J].
IKEDA, S .
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1993, 108 (04) :397-402
[6]  
LORD EA, 1976, TENSORS RELATIVITY C
[7]  
Miron R., 1994, GEOMETRY LAGRANGE SP
[8]  
Miron R., 1987, Tensor New Ser, V46, P8
[9]  
RUND H, 1972, IBER DTSCH MATH VERE, V74, P1
[10]  
Stavrinos P. C., 1995, Reports on Mathematical Physics, V36, P439, DOI 10.1016/0034-4877(96)83638-X