HYPERSPECTRAL TARGET DETECTION VIA ENSEMBLE LEARNING DEEP MULTIPLE INSTANCE NEURAL NETWORK

被引:2
作者
Li, Jiaming [1 ]
Li, Zhe [1 ]
Liu, Lirong [1 ]
Jiao, Changzhe [1 ]
机构
[1] Xidian Univ, Sch Artificial Intelligence, Key Lab Intelligent Percept & Image Understanding, Minist Educ China, Xian 710071, Peoples R China
来源
2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022) | 2022年
关键词
hyperspectral; target detection; multiple instance learning; ensemble learning;
D O I
10.1109/IGARSS46834.2022.9884766
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
In practice, the inaccurate labeling problem in hyperspectral images often has a great impact on the target detection accuracy of hyperspectral images. Modeling this inaccurate labeling problem using multiple instance learning (MIL) is a proven way. In this paper, we propose a deep multiple instance learning method based on ensemble learning, in which 1D convolution neural networks (1D CNN) are adopted to realize an end-to-end hyperspectral target detection structure. In the proposed deep MIL target detection method, the instance-level scores are reconstructed by deep ensemble learning combined with different MIL pooling layers, which helps to estimate the instance labels of positive bags. The method achieved good results in both simulated and real hyperspectral data, showing the effectiveness of the algorithm.
引用
收藏
页码:875 / 878
页数:4
相关论文
共 12 条
[1]   Solving the multiple instance problem with axis-parallel rectangles [J].
Dietterich, TG ;
Lathrop, RH ;
LozanoPerez, T .
ARTIFICIAL INTELLIGENCE, 1997, 89 (1-2) :31-71
[2]  
Gader P., 2013, REP2013570 U FLOR DE
[3]  
Jiao C., 2022, IEEE T CYBERNETICS
[4]   Multiple instance hybrid estimator for hyperspectral target characterization and sub-pixel target detection [J].
Jiao, Changzhe ;
Chen, Chao ;
McGarvey, Ronald G. ;
Bohlman, Stephanie ;
Jiao, Licheng ;
Zare, Alina .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2018, 146 :235-250
[5]  
Leistner C, 2010, LECT NOTES COMPUT SC, V6316, P29, DOI 10.1007/978-3-642-15567-3_3
[6]   Hyperspectral Image Classification Using Deep Pixel-Pair Features [J].
Li, Wei ;
Wu, Guodong ;
Zhang, Fan ;
Du, Qian .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2017, 55 (02) :844-853
[7]   Tensor Matched Subspace Detector for Hyperspectral Target Detection [J].
Liu, Yongjian ;
Gao, Guoming ;
Gu, Yanfeng .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2017, 55 (04) :1967-1974
[8]   Deep Recurrent Neural Networks for Hyperspectral Image Classification [J].
Mou, Lichao ;
Ghamisi, Pedram ;
Zhu, Xiao Xiang .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2017, 55 (07) :3639-3655
[9]  
Wang X., 2018, REMOTE SENS ENVIRON
[10]   Revisiting multiple instance neural networks [J].
Wang, Xinggang ;
Yan, Yongluan ;
Tang, Peng ;
Bai, Xiang ;
Liu, Wenyu .
PATTERN RECOGNITION, 2018, 74 :15-24