CONSISTENT PARTIAL LEAST SQUARES PATH MODELING

被引:1488
|
作者
Dijkstra, Theo K. [1 ]
Henseler, Jorg [2 ,3 ]
机构
[1] Univ Groningen, Fac Econ & Business, Nettelbosje 2, NL-9747 AE Groningen, Netherlands
[2] Univ Twente, Fac Engn Technol, NL-7522 NB Enschede, Netherlands
[3] Univ Nova Lisboa, NOVA IMS, P-1070312 Lisbon, Portugal
关键词
PLS; consistent partial least squares; SEM; variance-based structural equation modeling; Monte Carlo simulation; STRUCTURAL EQUATION MODELS; MAXIMUM-LIKELIHOOD; PLS-SEM; RIGDONS RETHINKING; LATENT-VARIABLES; MEDIATING ROLE; SYSTEMS; REGRESSION; PRAISE;
D O I
10.25300/MISQ/2015/39.2.02
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper resumes the discussion in information systems research on the use of partial least squares (PLS) path modeling and shows that the inconsistency of PLS path coefficient estimates in the case of reflective measurement can have adverse consequences for hypothesis testing. To remedy this, the study introduces a vital extension of PLS: consistent PLS (PLSc). PLSc provides a correction for estimates when PLS is applied to reflective constructs: The path coefficients, inter-construct correlations, and indicator loadings become consistent. The outcome of a Monte Carlo simulation reveals that the bias of PLSc parameter estimates is comparable to that of covariance-based structural equation modeling. Moreover, the outcome shows that PLSc has advantages when using non-normally distributed data. We discuss the implications for IS research and provide guidelines for choosing among structural equation modeling techniques.
引用
收藏
页码:297 / +
页数:25
相关论文
共 50 条
  • [41] A Primer on Partial Least Squares Structural Equation Modeling
    Ketchen, David J., Jr.
    LONG RANGE PLANNING, 2013, 46 (1-2) : 184 - 185
  • [42] Exploring the Link between Academic Dishonesty and Economic Delinquency: A Partial Least Squares Path Modeling Approach
    Druica, Elena
    Valsan, Calin
    Ianole-Calin, Rodica
    Mihail-Papuc, Razvan
    Munteanu, Irena
    MATHEMATICS, 2019, 7 (12)
  • [43] Estimating hierarchical constructs using consistent partial least squares The case of second-order composites of common factors
    van Riel, Allard C. R.
    Henseler, Jorg
    Kemeny, Ildiko
    Sasovova, Zuzana
    INDUSTRIAL MANAGEMENT & DATA SYSTEMS, 2017, 117 (03) : 459 - 477
  • [44] Confirmatory composite analysis using partial least squares: setting the record straight
    Schuberth, Florian
    REVIEW OF MANAGERIAL SCIENCE, 2021, 15 (05) : 1311 - 1345
  • [45] Global Sparse Partial Least Squares
    Mou, Yi
    You, Xinge
    Jiang, Xiubao
    Xu, Duanquan
    Yu, Shujian
    2014 INTERNATIONAL CONFERENCE ON SECURITY, PATTERN ANALYSIS, AND CYBERNETICS (SPAC), 2014, : 349 - 352
  • [46] Partial least squares for dependent data
    Singer, Marco
    Krivobokova, Tatyana
    Munk, Axel
    De Groot, Bert
    BIOMETRIKA, 2016, 103 (02) : 351 - 362
  • [47] Partial least squares, steepest descent, and conjugate gradient for regularized predictive modeling
    Qin, S. Joe
    Liu, Yiren
    Tang, Shiqin
    AICHE JOURNAL, 2023, 69 (04)
  • [48] Penalized partial least squares for pleiotropy
    Broc, Camilo
    Truong, Therese
    Liquet, Benoit
    BMC BIOINFORMATICS, 2021, 22 (01)
  • [49] An assessment of the use of partial least squares structural equation modeling (PLS-SEM) in hospitality research
    Ali, Faizan
    Rasoolimanesh, S. Mostafa
    Sarstedt, Marko
    Ringle, Christian M.
    Ryu, Kisang
    INTERNATIONAL JOURNAL OF CONTEMPORARY HOSPITALITY MANAGEMENT, 2018, 30 (01) : 514 - 538
  • [50] Dissimilarity partial least squares applied to non-linear modeling problems
    Zerzucha, P.
    Daszykowski, M.
    Walczak, B.
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2012, 110 (01) : 156 - 162