Averaging principle for a class of stochastic reaction-diffusion equations

被引:149
作者
Cerrai, Sandra [1 ]
Freidlin, Mark [2 ]
机构
[1] Univ Florence, Dipartimento Matemat Decisioni, I-50134 Florence, Italy
[2] Univ Maryland, Dept Math, College Pk, MD 20742 USA
基金
美国国家科学基金会;
关键词
Stochastic reaction-diffusion equations; Invariant measures and ergodicity; Averaging principle; Kolmogorov equations in Hilbert spaces; BEHAVIOR; SYSTEMS;
D O I
10.1007/s00440-008-0144-z
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider the averaging principle for stochastic reaction-diffusion equations. Under some assumptions providing existence of a unique invariant measure of the fast motion with the frozen slow component, we calculate limiting slow motion. The study of solvability of Kolmogorov equations in Hilbert spaces and the analysis of regularity properties of solutions, allow to generalize the classical approach to finite-dimensional problems of this type in the case of SPDE's.
引用
收藏
页码:137 / 177
页数:41
相关论文
共 21 条
[1]  
[Anonymous], 1990, CASOPIS PEST MAT
[2]  
Arnold V. I., 2006, ENCY MATH SCI
[3]   Diffusion approximation for slow motion in fully coupled averaging [J].
Bakhtin, V ;
Kifer, Y .
PROBABILITY THEORY AND RELATED FIELDS, 2004, 129 (02) :157-181
[4]  
Bogoliubov NN., 1961, ASYMPTOTIC METHODS T
[5]   On stochastic behavior of perturbed Hamiltonian systems [J].
Brin, M ;
Freidlin, M .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2000, 20 :55-76
[6]  
Cerrai S., 2001, 2 ORDER PDES FINITE, V1, DOI [10.1007/b80743, DOI 10.1007/B80743]
[7]  
Da Prato G., 2014, Encyclopedia of Mathematics and Its Applications, V152, DOI 10.1017/CBO9780511666223
[8]   Long-time behavior of weakly coupled oscillators [J].
Freidlin, M. I. ;
Wentzell, A. D. .
JOURNAL OF STATISTICAL PHYSICS, 2006, 123 (06) :1311-1337
[9]   On stable oscillations and equilibriums induced by small noise [J].
Freidlin, MI .
JOURNAL OF STATISTICAL PHYSICS, 2001, 103 (1-2) :283-300
[10]  
Freidlin MI, 2012, Random Perturbations of Dynamical Systems