On the Dynamics of the q-Deformed Gaussian Map

被引:7
作者
Canovas, J. [1 ]
Munoz-Guillermo, M. [1 ]
机构
[1] Univ Politecn Cartagena, Dept Matemat Aplicada & Estadist, C Dr Fleming S-N, Murcia 30202, Spain
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2020年 / 30卷 / 08期
关键词
Gaussian map; q-deformation; topological entropy; ATTRACTORS; INTERVAL; ENTROPY;
D O I
10.1142/S0218127420300219
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Following the scheme inspired by Tsallis [Jagannathan & Sudeshna, 2005; Patidar & Sud, 2009], we study the Gaussian map and its q-deformed version. We compute the topological entropies of the discrete dynamical systems which are obtained for both maps, the original Gaussian map and its q-modification. In particular, we are able to obtain the parametric region in which the topological entropy is positive. The analysis of the sign of Schwarzian derivative and the topological entropy allow us a deeper analysis of the dynamics. We also highlight the coexistence of attractors, even if it is possible to determine a wide range of parameters in which one of them is a chaotic attractor.
引用
收藏
页数:13
相关论文
共 23 条
[1]   TOPOLOGICAL ENTROPY [J].
ADLER, RL ;
KONHEIM, AG ;
MCANDREW, MH .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1965, 114 (02) :309-&
[2]   Thermodynamics of phase transition in higher dimensional AdS black holes [J].
Banerjee, Rabin ;
Roychowdhury, Dibakar .
JOURNAL OF HIGH ENERGY PHYSICS, 2011, (11)
[3]  
Blanchard F, 2002, J REINE ANGEW MATH, V547, P51
[4]   AN IMPROVED ALGORITHM FOR COMPUTING TOPOLOGICAL-ENTROPY [J].
BLOCK, L ;
KEESLING, J ;
LI, SL ;
PETERSON, K .
JOURNAL OF STATISTICAL PHYSICS, 1989, 55 (5-6) :929-939
[5]   On the dynamics of the q-deformed logistic map [J].
Canovas, J. ;
Munoz-Guillermo, M. .
PHYSICS LETTERS A, 2019, 383 (15) :1742-1754
[6]   Topological entropy of maps on the real line [J].
Cánovas, JS ;
Rodríguez, JM .
TOPOLOGY AND ITS APPLICATIONS, 2005, 153 (5-6) :735-746
[7]   Quasi-classical limit in q-deformed systems, non-commutativity and the q-path integral [J].
Chaichian, M ;
Demichev, AP ;
Kulish, PP .
PHYSICS LETTERS A, 1997, 233 (4-6) :251-260
[8]  
de Melo W., 1993, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) Results in Mathematics and Related Areas (3)
[9]   Metric attractors for smooth unimodal maps [J].
Graczyk, J ;
Sands, D ;
Swiatek, G .
ANNALS OF MATHEMATICS, 2004, 159 (02) :725-740
[10]   SENSITIVE DEPENDENCE TO INITIAL CONDITIONS FOR ONE DIMENSIONAL MAPS [J].
GUCKENHEIMER, J .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1979, 70 (02) :133-160