A polarizable coarse-grained water model for coarse-grained proteins simulations

被引:39
作者
Ha-Duong, Tap [1 ]
Basdevant, Nathalie [1 ]
Borgis, Daniel [1 ,2 ]
机构
[1] Univ Evry Val Essonne, Lab Anal & Modelisat Biol & Environm, F-91025 Evry, France
[2] Ecole Normale Super, CNRS Pasteur, Dept Chim, UMR, F-75231 Paris 05, France
关键词
SOLVENT MODEL; FORCE-FIELD; DYNAMICS SIMULATIONS; COMPLEX-MOLECULES; NUCLEIC-ACIDS; ELECTROSTATICS; REPRESENTATION; POLYPEPTIDE; ENERGY;
D O I
10.1016/j.cplett.2008.11.092
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
To describe solvation effects in coarse-grained molecular dynamics simulations, a numerically efficient coarse-grained water model is introduced. The solvent is represented by polarizable pseudo-particles embedding three water molecules. The particles carry induced dipoles that are made sensitive to the solute electric field, but not to each other. The solvent model is compatible with a coarse-grained proteins force field involving a reduced number of grains per residue and yields quantitative description of solvation properties, such as hydrophobic forces and electrostatic solvation free-energies. Those later quantities can be estimated 'on-the-fly' over short simulation windows. (C) 2008 Elsevier B. V. All rights reserved.
引用
收藏
页码:79 / 82
页数:4
相关论文
共 25 条
[1]   A semi-implicit solvent model for the simulation of peptides and proteins [J].
Basdevant, N ;
Borgis, D ;
Ha-Duong, T .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2004, 25 (08) :1015-1029
[2]   A coarse-grained protein-protein potential derived from an all-atom force field [J].
Basdevant, Nathalie ;
Borgis, Daniel ;
Ha-Duong, Tap .
JOURNAL OF PHYSICAL CHEMISTRY B, 2007, 111 (31) :9390-9399
[3]   Particle-based implicit solvent model for biosimulations: Application to proteins and nucleic acids hydration [J].
Basdevant, Nathalie ;
Ha-Duong, Tap ;
Borgis, Daniel .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2006, 2 (06) :1646-1656
[4]   The Protein Data Bank [J].
Berman, HM ;
Westbrook, J ;
Feng, Z ;
Gilliland, G ;
Bhat, TN ;
Weissig, H ;
Shindyalov, IN ;
Bourne, PE .
NUCLEIC ACIDS RESEARCH, 2000, 28 (01) :235-242
[5]   Computing the electrostatic free-energy of complex molecules:: The variational Coulomb field approximation [J].
Borgis, D ;
Lévy, N ;
Marchi, M .
JOURNAL OF CHEMICAL PHYSICS, 2003, 119 (06) :3516-3528
[6]   CONFIGURATION OF RANDOM POLYPEPTIDE CHAINS .2. THEORY [J].
BRANT, DA ;
FLORY, PJ .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1965, 87 (13) :2791-&
[7]   A 2ND GENERATION FORCE-FIELD FOR THE SIMULATION OF PROTEINS, NUCLEIC-ACIDS, AND ORGANIC-MOLECULES [J].
CORNELL, WD ;
CIEPLAK, P ;
BAYLY, CI ;
GOULD, IR ;
MERZ, KM ;
FERGUSON, DM ;
SPELLMEYER, DC ;
FOX, T ;
CALDWELL, JW ;
KOLLMAN, PA .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1995, 117 (19) :5179-5197
[8]   PSEUDODIHEDRALS - SIMPLIFIED PROTEIN BACKBONE REPRESENTATION WITH KNOWLEDGE-BASED ENERGY [J].
DEWITTE, RS ;
SHAKHNOVICH, EI .
PROTEIN SCIENCE, 1994, 3 (09) :1570-1581
[9]   Competition of hydrophobic and Coulombic interactions between nanosized solutes [J].
Dzubiella, J ;
Hansen, JP .
JOURNAL OF CHEMICAL PHYSICS, 2004, 121 (11) :5514-5530
[10]   Effective charges for macromolecules in solvent [J].
Gabdoulline, RR ;
Wade, RC .
JOURNAL OF PHYSICAL CHEMISTRY, 1996, 100 (09) :3868-3878