ON HARMONIC AND PSEUDOHARMONIC MAPS FROM PSEUDO-HERMITIAN MANIFOLDS

被引:7
作者
Chong, Tian [1 ]
Dong, Yuxin [2 ,3 ]
Ren, Yibin [4 ]
Yang, Guilin [5 ,6 ]
机构
[1] Shanghai Polytech Univ, Coll Arts & Sci, Sch Sci, Shanghai 201209, Peoples R China
[2] Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
[3] Fudan Univ, Lab Math Nonlinear Sci, Shanghai 200433, Peoples R China
[4] Zhejiang Normal Univ, Coll Math Phys & Informat Engn, Jinhua 321004, Peoples R China
[5] Huazhong Univ Sci & Technol, Sch Math & Stat, Wuhan 430074, Hubei, Peoples R China
[6] Huazhong Univ Sci & Technol, Hubei Key Lab Engn Modeling & Sci Comp, Wuhan 430074, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
HOLOMORPHICITY;
D O I
10.1017/nmj.2017.38
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we give some rigidity results for both harmonic and pseudoharmonic maps from pseudo-Hermitian manifolds into Riemannian manifolds or Kahler manifolds. Some foliated results, pluriharmonicity and Siu-Sampson type results are established for both harmonic maps and pseudoharmonic maps.
引用
收藏
页码:170 / 210
页数:41
相关论文
共 26 条
[1]  
[Anonymous], 2008, PROGR MATH
[2]  
Barletta E, 2001, INDIANA U MATH J, V50, P719
[3]  
Boyer C.P., 1998, PREPRINT
[4]  
CARLSON JA, 1989, PUBL MATH-PARIS, P173
[5]   Nonnegativity of CR Paneitz Operator and Its Application to the CR Obata's Theorem [J].
Chang, Shu-Cheng ;
Chiu, Hung-Lin .
JOURNAL OF GEOMETRIC ANALYSIS, 2009, 19 (02) :261-287
[6]  
Chang T., 2010, THESIS
[7]  
Dong Y.X., ARXIV161001032
[8]   Monotonicity formulae and holomorphicity of harmonic maps between Kahler manifolds [J].
Dong, Yuxin .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2013, 107 :1221-1260
[9]  
Dragomir S., 2006, Differential Geometry and Analysis on CR Manifolds
[10]   Pseudoharmonic maps and vector fields on CR manifolds [J].
Dragomir, Sorin ;
Kamishima, Yoshinobu .
JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2010, 62 (01) :269-303