Hybrid finite-difference time-domain modeling of curved surfaces using tetrahedral edge elements

被引:57
|
作者
Wu, RB [1 ]
Itoh, T [1 ]
机构
[1] UNIV CALIF LOS ANGELES,DEPT ELECT ENGN,LOS ANGELES,CA 90024
关键词
electromagnetic transient analysis; FDTD methods;
D O I
10.1109/8.611251
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A hybrid finite-difference time-domain (FDTD) method is proposed for solving transient electromagnetic problems associated with structures of curved surfaces. The method employs the conventional FDTD method for most of the regular region but introduces the tetrahedral edge-based finite-element scheme to model the region near the curved surfaces. Without any interpolation for the fields on the curved surface, nor any additional stability constraint due to the finer division near the curved surfaces, the novel finite-element scheme is found to have second-order accuracy, unconditional stability, programming ease, and computational efficiency. The hybrid method is applied to solve the electromagnetic scattering of three-dimensional (3-D) arbitrarily shaped dielectric objects to demonstrate its superior performance.
引用
收藏
页码:1302 / 1309
页数:8
相关论文
共 50 条
  • [22] Hybrid finite-difference/finite-volume time-domain analysis for microwave integrated circuits with curved PEC surfaces using a nonuniform rectangular grid
    Yang, MW
    Chen, YC
    Mittra, R
    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2000, 48 (06) : 969 - 975
  • [23] Finite-difference time-domain algorithm for modeling Sagnac effect in rotating optical elements
    Peng, Chao
    Hui, Rui
    Luo, Xuefeng
    Li, Zhengbin
    Xu, Anshi
    OPTICS EXPRESS, 2008, 16 (08): : 5227 - 5240
  • [24] Locally conformal method for acoustic finite-difference time-domain modeling of rigid surfaces
    Tolan, JG
    Schneider, JB
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2003, 114 (05): : 2575 - 2581
  • [25] Global modeling of nonlinear circuits using the finite-difference Laguerre time-domain/alternative direction implicit finite-difference time-domain method with stability investigation
    Mirzavand, R.
    Abdipour, A.
    Moradi, G.
    Movahhedi, M.
    INTERNATIONAL JOURNAL OF NUMERICAL MODELLING-ELECTRONIC NETWORKS DEVICES AND FIELDS, 2012, 25 (04) : 400 - 412
  • [26] Finite-difference time-domain methods
    Teixeira, F. L.
    Sarris, C.
    Zhang, Y.
    Na, D. -Y.
    Berenger, J. -P.
    Su, Y.
    Okoniewski, M.
    Chew, W. C.
    Backman, V.
    Simpson, J. J.
    NATURE REVIEWS METHODS PRIMERS, 2023, 3 (01):
  • [27] Finite-difference time-domain methods
    F. L. Teixeira
    C. Sarris
    Y. Zhang
    D.-Y. Na
    J.-P. Berenger
    Y. Su
    M. Okoniewski
    W. C. Chew
    V. Backman
    J. J. Simpson
    Nature Reviews Methods Primers, 3
  • [28] Numerical modeling of packaging effects using the Finite-Difference Time-Domain technique
    Piket-May, M
    Rumsey, I
    Byers, A
    Boots, B
    Thomas, K
    Gravrok, R
    ELECTRICAL PERFORMANCE OF ELECTRONIC PACKAGING, 1998, : 264 - 266
  • [29] Time-domain finite-difference modeling for attenuative anisotropic media
    Bai, Tong
    Tsvankin, Ilya
    GEOPHYSICS, 2016, 81 (02) : C69 - C77
  • [30] MODELING OF THIN DIELECTRIC STRUCTURES USING THE FINITE-DIFFERENCE TIME-DOMAIN TECHNIQUE
    TIRKAS, PA
    DEMAREST, KR
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 1991, 39 (09) : 1338 - 1344