Hybrid finite-difference time-domain modeling of curved surfaces using tetrahedral edge elements

被引:57
|
作者
Wu, RB [1 ]
Itoh, T [1 ]
机构
[1] UNIV CALIF LOS ANGELES,DEPT ELECT ENGN,LOS ANGELES,CA 90024
关键词
electromagnetic transient analysis; FDTD methods;
D O I
10.1109/8.611251
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A hybrid finite-difference time-domain (FDTD) method is proposed for solving transient electromagnetic problems associated with structures of curved surfaces. The method employs the conventional FDTD method for most of the regular region but introduces the tetrahedral edge-based finite-element scheme to model the region near the curved surfaces. Without any interpolation for the fields on the curved surface, nor any additional stability constraint due to the finer division near the curved surfaces, the novel finite-element scheme is found to have second-order accuracy, unconditional stability, programming ease, and computational efficiency. The hybrid method is applied to solve the electromagnetic scattering of three-dimensional (3-D) arbitrarily shaped dielectric objects to demonstrate its superior performance.
引用
收藏
页码:1302 / 1309
页数:8
相关论文
共 50 条