Reductions of Darboux transformations for the PT-symmetric nonlocal Davey-Stewartson equations

被引:33
作者
Yang, Bo
Chen, Yong [1 ]
机构
[1] East China Normal Univ, Shanghai Key Lab Trustworthy Comp, Shanghai 200062, Peoples R China
基金
中国国家自然科学基金;
关键词
PT-symmetric nonlocal; Davey-Stewartson equations; Darboux transformation; Rogue waves; SOLITONS;
D O I
10.1016/j.aml.2017.12.025
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this letter, a study of the reductions of the Darboux transformations (DTs) for the PT-symmetric nonlocal Davey-Stewartson (DS) equations is presented. Firstly, a binary DT is constructed in integral form for the PT-symmetric nonlocal DS-I equation. Secondly, an elementary DT is constructed in differential form for the PT-symmetric nonlocal DS-II equation. Afterwards, a new binary DT in integral form is also found for the nonlocal DS-II equation. Moreover, it is shown that the symmetry properties in the corresponding Lax-pairs of the equations are well preserved through these DTs. Thirdly, based on above DTs, the fundamental rogue waves and rational travelling waves are obtained. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:43 / 49
页数:7
相关论文
共 24 条
[1]   Integrable Nonlocal Nonlinear Equations [J].
Ablowitz, Mark J. ;
Musslimani, Ziad H. .
STUDIES IN APPLIED MATHEMATICS, 2017, 139 (01) :7-59
[2]   Inverse scattering transform for the integrable nonlocal nonlinear Schrodinger equation [J].
Ablowitz, Mark J. ;
Musslimani, Ziad H. .
NONLINEARITY, 2016, 29 (03) :915-946
[3]   Integrable discrete PT symmetric model [J].
Ablowitz, Mark J. ;
Musslimani, Ziad H. .
PHYSICAL REVIEW E, 2014, 90 (03)
[4]   Integrable Nonlocal Nonlinear Schrodinger Equation [J].
Ablowitz, Mark J. ;
Musslimani, Ziad H. .
PHYSICAL REVIEW LETTERS, 2013, 110 (06)
[5]   Integrable multidimensional versions of the nonlocal nonlinear Schrodinger equation [J].
Fokas, A. S. .
NONLINEARITY, 2016, 29 (02) :319-324
[6]   Complete integrability of nonlocal nonlinear Schrodinger equation [J].
Gerdjikov, V. S. ;
Saxena, A. .
JOURNAL OF MATHEMATICAL PHYSICS, 2017, 58 (01)
[7]   Darboux transformations for the Davey-Stewartson equations [J].
Guil, F ;
Manas, M .
PHYSICS LETTERS A, 1996, 217 (01) :1-6
[8]   On a nonlocal modified Korteweg-de Vries equation: Integrability, Darboux transformation and soliton solutions [J].
Ji, Jia-Liang ;
Zhu, Zuo-Nong .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2017, 42 :699-708
[9]   Periodic and hyperbolic soliton solutions of a number of nonlocal nonlinear equations [J].
Khare, Avinash ;
Saxena, Avadh .
JOURNAL OF MATHEMATICAL PHYSICS, 2015, 56 (03)
[10]   DARBOUX TRANSFORMS FOR DAVEY-STEWARTSON EQUATIONS AND SOLITONS IN MULTIDIMENSIONS [J].
LEBLE, SB ;
SALLE, MA ;
YUROV, AV .
INVERSE PROBLEMS, 1992, 8 (02) :207-218