Effect of Tensile Strain on Thermal Conductivity in Monolayer Graphene Nanoribbons: A Molecular Dynamics Study

被引:23
作者
Zhang, Jianwei [1 ]
He, Xiaodong [2 ]
Yang, Lin [2 ]
Wu, Guoqiang [3 ]
Sha, Jianjun [3 ]
Hou, Chengyu [4 ]
Yin, Cunlu [1 ]
Pan, Acheng [1 ]
Li, Zhongzhou [1 ]
Liu, Yubai [1 ]
机构
[1] Dalian Univ Technol, Sch Elect Sci & Technol, Dalian 116024, Peoples R China
[2] Harbin Inst Technol, Ctr Composite Mat & Struct, Harbin 150080, Peoples R China
[3] Dalian Univ Technol, State Key Lab Struct Anal Ind Equipment, Dalian 116024, Peoples R China
[4] Harbin Inst Technol, Sch Elect & Informat Engn, Harbin 150080, Peoples R China
来源
SENSORS | 2013年 / 13卷 / 07期
基金
中国国家自然科学基金;
关键词
graphene nanoribbons; thermal conductivity; phonon; SINGLE-LAYER GRAPHENE; RECTIFICATION;
D O I
10.3390/s130709388
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
The thermal conductivity of monolayer graphene nanoribbons (GNRs) with different tensile strain is investigated by using a nonequilibrium molecular dynamics method. Significant increasing amplitude of the molecular thermal vibration, molecular potential energy vibration and thermal conductivity vibration of stretching GNRs were detected. Some 20%approximate to 30% thermal conductivity decay is found in 9%approximate to 15% tensile strain of GNR cases. It is explained by the fact that GNR structural ridges scatter some low-frequency phonons which pass in the direction perpendicular to the direction of GNR stretching which was indicated by a phonon density of state investigation.
引用
收藏
页码:9388 / 9395
页数:8
相关论文
共 27 条
  • [1] Alexander A. B., 2011, NAT MATER, V12, P569
  • [2] [Anonymous], J PHYS CONDENS MATTE
  • [3] Superior thermal conductivity of single-layer graphene
    Balandin, Alexander A.
    Ghosh, Suchismita
    Bao, Wenzhong
    Calizo, Irene
    Teweldebrhan, Desalegne
    Miao, Feng
    Lau, Chun Ning
    [J]. NANO LETTERS, 2008, 8 (03) : 902 - 907
  • [4] Balandin Alexander A., 2012, MATER TODAY, V15, P266
  • [5] Unexpected large thermal rectification in asymmetric grain boundary of graphene
    Cao, Hai-Yuan
    Xiang, Hongjun
    Gong, Xin-Gao
    [J]. SOLID STATE COMMUNICATIONS, 2012, 152 (19) : 1807 - 1810
  • [6] Layer and size dependence of thermal conductivity in multilayer graphene nanoribbons
    Cao, Hai-Yuan
    Guo, Zhi-Xin
    Xiang, Hongjun
    Gong, Xin-Gao
    [J]. PHYSICS LETTERS A, 2012, 376 (04) : 525 - 528
  • [7] Mechanical failure of zigzag graphene nanoribbons under tensile strain induced by edge reconstruction
    Cheng, Y. C.
    Zhu, Z. Y.
    Schwingenschloegl, U.
    [J]. JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (47) : 24676 - 24680
  • [8] Influence of hydrogen functionalization on thermal conductivity of graphene: Nonequilibrium molecular dynamics simulations
    Chien, Shih-Kai
    Yang, Yue-Tzu
    Chen, Cha'o-Kuang
    [J]. APPLIED PHYSICS LETTERS, 2011, 98 (03)
  • [9] Denis L.N, 2012, NANO LETT, V12, P3238
  • [10] Extremely high thermal conductivity of graphene: Prospects for thermal management applications in nanoelectronic circuits
    Ghosh, S.
    Calizo, I.
    Teweldebrhan, D.
    Pokatilov, E. P.
    Nika, D. L.
    Balandin, A. A.
    Bao, W.
    Miao, F.
    Lau, C. N.
    [J]. APPLIED PHYSICS LETTERS, 2008, 92 (15)