Artificial intelligence for multimodal data integration in oncology

被引:229
|
作者
Lipkova, Jana [1 ,2 ,3 ,4 ]
Chen, Richard J. [1 ,2 ,3 ,4 ,5 ]
Chen, Bowen [1 ,2 ,8 ]
Lu, Ming Y. [1 ,2 ,3 ,4 ,7 ]
Barbieri, Matteo [1 ]
Shao, Daniel [1 ,2 ,6 ]
Vaidya, Anurag J. [1 ,2 ,6 ]
Chen, Chengkuan [1 ,2 ,3 ,4 ]
Zhuang, Luoting [1 ,3 ]
Williamson, Drew F. K. [1 ,2 ,3 ,4 ]
Shaban, Muhammad [1 ,2 ,3 ,4 ]
Chen, Tiffany Y. [1 ,2 ,3 ,4 ]
Mahmood, Faisal [1 ,2 ,3 ,4 ,9 ]
机构
[1] Harvard Med Sch, Brigham & Womens Hosp, Dept Pathol, Boston, MA 02115 USA
[2] Harvard Med Sch, Massachusetts Gen Hosp, Dept Pathol, Boston, MA 02115 USA
[3] Broad Inst Harvard & MIT, Canc Program, Cambridge, MA 02142 USA
[4] Dana Farber Canc Inst, Data Sci Program, Boston, MA 02215 USA
[5] Harvard Med Sch, Dept Biomed Informat, Boston, MA USA
[6] Harvard Hlth Sci & Technol HST, Cambridge, MA USA
[7] MIT, Dept Elect Engn & Comp Sci, Cambridge, MA USA
[8] Harvard Univ, Dept Comp Sci, Cambridge, MA USA
[9] Harvard Univ, Harvard Data Sci Initiat, Cambridge, MA 02138 USA
基金
美国国家科学基金会;
关键词
BREAST-CANCER; PREDICTION; IMAGES; GLIOBLASTOMA; RADIOMICS; MEDICINE; FEATURES; SUBTYPES; GRADE;
D O I
10.1016/j.ccell.2022.09.012
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
In oncology, the patient state is characterized by a whole spectrum of modalities, ranging from radiology, his-tology, and genomics to electronic health records. Current artificial intelligence (AI) models operate mainly in the realm of a single modality, neglecting the broader clinical context, which inevitably diminishes their po-tential. Integration of different data modalities provides opportunities to increase robustness and accuracy of diagnostic and prognostic models, bringing AI closer to clinical practice. AI models are also capable of discovering novel patterns within and across modalities suitable for explaining differences in patient out-comes or treatment resistance. The insights gleaned from such models can guide exploration studies and contribute to the discovery of novel biomarkers and therapeutic targets. To support these advances, here we present a synopsis of AI methods and strategies for multimodal data fusion and association discovery. We outline approaches for AI interpretability and directions for AI-driven exploration through multimodal data interconnections. We examine challenges in clinical adoption and discuss emerging solutions.
引用
收藏
页码:1095 / 1110
页数:16
相关论文
共 50 条
  • [41] Trends in cardiology and oncology artificial intelligence publications
    Suero-Abreu, Giselle A.
    Hamid, Abdulaziz
    Akbilgic, Oguz
    Brown, Sherry-Ann
    AMERICAN HEART JOURNAL PLUS: CARDIOLOGY RESEARCH AND PRACTICE, 2022, 17
  • [42] Data mining and XBRL integration in management accounting information based on artificial intelligence
    Ping, Wu
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2021, 40 (04) : 6755 - 6766
  • [43] Editorial: Automation and artificial intelligence in radiation oncology
    Cilla, Savino
    Barajas, Jose Eduardo Villarreal
    FRONTIERS IN ONCOLOGY, 2022, 12
  • [44] Convergence of evolving artificial intelligence and machine learning techniques in precision oncology
    Fountzilas, Elena
    Pearce, Tillman
    Baysal, Mehmet A.
    Chakraborty, Abhijit
    Tsimberidou, Apostolia M.
    NPJ DIGITAL MEDICINE, 2025, 8 (01):
  • [45] Artificial intelligence in transplantation (machine-learning classifiers and transplant oncology)
    Ivanics, Tommy
    Patel, Madhukar S.
    Erdman, Lauren
    Sapisochin, Gonzalo
    CURRENT OPINION IN ORGAN TRANSPLANTATION, 2020, 25 (04) : 426 - 434
  • [46] Artificial Intelligence-based Radiomics in the Era of Immuno-Oncology
    Kang, Cyra Y.
    Duarte, Samantha E.
    Kim, Hye Sung
    Kim, Eugene
    Park, Jonghanne
    Lee, Alice Daeun
    Kim, Yeseul
    Kim, Leeseul
    Cho, Sukjoo
    Oh, Yoojin
    Gim, Gahyun
    Park, Inae
    Lee, Dongyup
    Abazeed, Mohamed
    Velichko, Yury S.
    Chae, Young Kwang
    ONCOLOGIST, 2022, 27 (06) : E471 - E483
  • [47] Clinical applications of artificial intelligence and radiomics in neuro-oncology imaging
    Abdel Razek, Ahmed Abdel Khalek
    Alksas, Ahmed
    Shehata, Mohamed
    AbdelKhalek, Amr
    Abdel Baky, Khaled
    El-Baz, Ayman
    Helmy, Eman
    INSIGHTS INTO IMAGING, 2021, 12 (01)
  • [48] Integrated multimodal artificial intelligence framework for healthcare applications
    Soenksen, Luis R.
    Ma, Yu
    Zeng, Cynthia
    Boussioux, Leonard
    Carballo, Kimberly Villalobos
    Na, Liangyuan
    Wiberg, Holly M.
    Li, Michael L.
    Fuentes, Ignacio
    Bertsimas, Dimitris
    NPJ DIGITAL MEDICINE, 2022, 5 (01)
  • [49] Artificial intelligence: Deep learning in oncological radiomics and challenges of interpretability and data harmonization
    Papadimitroulas, Panagiotis
    Brocki, Lennart
    Chung, Neo Christopher
    Marchadour, Wistan
    Vermet, Franck
    Gaubert, Laurent
    Eleftheriadis, Vasilis
    Plachouris, Dimitris
    Visvikis, Dimitris
    Kagadis, George C.
    Hatt, Mathieu
    PHYSICA MEDICA-EUROPEAN JOURNAL OF MEDICAL PHYSICS, 2021, 83 : 108 - 121
  • [50] Artificial Intelligence for Response Assessment in Neuro Oncology (AI-RANO), part 1: review of current advancements
    Villanueva-Meyer, Javier E.
    Bakas, Spyridon
    Tiwari, Pallavi
    Lupo, Janine M.
    Calabrese, Evan
    Davatzikos, Christos
    Bi, Wenya Linda
    Ismail, Marwa
    Akbari, Hamed
    Lohmann, Philipp
    Booth, Thomas C.
    Wiestler, Benedikt
    Aerts, Hugo J. W. L.
    Rasool, Ghulam
    Tonn, Joerg C.
    Nowosielski, Martha
    Jain, Rajan
    Colen, Rivka R.
    Pati, Sarthak
    Baid, Ujjwal
    Vollmuth, Philipp
    Macdonald, David
    Vogelbaum, Michael A.
    Chang, Susan M.
    Huang, Raymond Y.
    Galldiks, Norbert
    LANCET ONCOLOGY, 2024, 25 (11) : e581 - e588