Artificial intelligence for multimodal data integration in oncology

被引:229
|
作者
Lipkova, Jana [1 ,2 ,3 ,4 ]
Chen, Richard J. [1 ,2 ,3 ,4 ,5 ]
Chen, Bowen [1 ,2 ,8 ]
Lu, Ming Y. [1 ,2 ,3 ,4 ,7 ]
Barbieri, Matteo [1 ]
Shao, Daniel [1 ,2 ,6 ]
Vaidya, Anurag J. [1 ,2 ,6 ]
Chen, Chengkuan [1 ,2 ,3 ,4 ]
Zhuang, Luoting [1 ,3 ]
Williamson, Drew F. K. [1 ,2 ,3 ,4 ]
Shaban, Muhammad [1 ,2 ,3 ,4 ]
Chen, Tiffany Y. [1 ,2 ,3 ,4 ]
Mahmood, Faisal [1 ,2 ,3 ,4 ,9 ]
机构
[1] Harvard Med Sch, Brigham & Womens Hosp, Dept Pathol, Boston, MA 02115 USA
[2] Harvard Med Sch, Massachusetts Gen Hosp, Dept Pathol, Boston, MA 02115 USA
[3] Broad Inst Harvard & MIT, Canc Program, Cambridge, MA 02142 USA
[4] Dana Farber Canc Inst, Data Sci Program, Boston, MA 02215 USA
[5] Harvard Med Sch, Dept Biomed Informat, Boston, MA USA
[6] Harvard Hlth Sci & Technol HST, Cambridge, MA USA
[7] MIT, Dept Elect Engn & Comp Sci, Cambridge, MA USA
[8] Harvard Univ, Dept Comp Sci, Cambridge, MA USA
[9] Harvard Univ, Harvard Data Sci Initiat, Cambridge, MA 02138 USA
基金
美国国家科学基金会;
关键词
BREAST-CANCER; PREDICTION; IMAGES; GLIOBLASTOMA; RADIOMICS; MEDICINE; FEATURES; SUBTYPES; GRADE;
D O I
10.1016/j.ccell.2022.09.012
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
In oncology, the patient state is characterized by a whole spectrum of modalities, ranging from radiology, his-tology, and genomics to electronic health records. Current artificial intelligence (AI) models operate mainly in the realm of a single modality, neglecting the broader clinical context, which inevitably diminishes their po-tential. Integration of different data modalities provides opportunities to increase robustness and accuracy of diagnostic and prognostic models, bringing AI closer to clinical practice. AI models are also capable of discovering novel patterns within and across modalities suitable for explaining differences in patient out-comes or treatment resistance. The insights gleaned from such models can guide exploration studies and contribute to the discovery of novel biomarkers and therapeutic targets. To support these advances, here we present a synopsis of AI methods and strategies for multimodal data fusion and association discovery. We outline approaches for AI interpretability and directions for AI-driven exploration through multimodal data interconnections. We examine challenges in clinical adoption and discuss emerging solutions.
引用
收藏
页码:1095 / 1110
页数:16
相关论文
共 50 条
  • [31] Artificial intelligence in oncology: Path to implementation
    Chua, Isaac S.
    Gaziel-Yablowitz, Michal
    Korach, Zfania T.
    Kehl, Kenneth L.
    Levitan, Nathan A.
    Arriaga, Yull E.
    Jackson, Gretchen P.
    Bates, David W.
    Hassett, Michael
    CANCER MEDICINE, 2021, 10 (12): : 4138 - 4149
  • [32] Artificial intelligence and big data integration in anterior segment imaging for glaucoma
    Chansangpetch, Sunee
    Ittarat, Mantapond
    Cheungpasitporn, Wisit
    Lin, Shan C.
    TAIWAN JOURNAL OF OPHTHALMOLOGY, 2024, 14 (03) : 319 - 332
  • [33] Artificial intelligence integration for extension of big data for decision-making
    Fatnassi, Khaoula
    Zahaf, Sahbi
    Gargouri, Faiez
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2025, 166
  • [34] Integration of artificial intelligence in lung cancer: Rise of the machine
    Ladbury, Colton
    Amini, Arya
    Govindarajan, Ameish
    Mambetsariev, Isa
    Raz, Dan J.
    Massarelli, Erminia
    Williams, Terence
    Rodin, Andrei
    Salgia, Ravi
    CELL REPORTS MEDICINE, 2023, 4 (02)
  • [35] Applying artificial intelligence for cancer immunotherapy
    Xu, Zhijie
    Wang, Xiang
    Zeng, Shuangshuang
    Ren, Xinxin
    Yan, Yuanliang
    Gong, Zhicheng
    ACTA PHARMACEUTICA SINICA B, 2021, 11 (11) : 3393 - 3405
  • [36] Applying Artificial Intelligence to Gynecologic Oncology: A Review
    Mysona, David Pierce
    Kapp, Daniel S.
    Rohatgi, Atharva
    Lee, Danny
    Mann, Amandeep K.
    Tran, Paul
    Tran, Lynn
    She, Jin-Xiong
    Chan, John K.
    OBSTETRICAL & GYNECOLOGICAL SURVEY, 2021, 76 (05) : 292 - 301
  • [37] Applications of artificial intelligence multiomics in precision oncology
    Srivastava, Ruby
    JOURNAL OF CANCER RESEARCH AND CLINICAL ONCOLOGY, 2023, 149 (01) : 503 - 510
  • [38] The role of artificial intelligence in veterinary radiation oncology
    Leary, Del
    Basran, Parminder S. S.
    VETERINARY RADIOLOGY & ULTRASOUND, 2022, 63 : 903 - 912
  • [39] Interpretable artificial intelligence in radiology and radiation oncology
    Cui, Sunan
    Traverso, Alberto
    Niraula, Dipesh
    Zou, Jiaren
    Luo, Yi
    Owen, Dawn
    El Naqa, Issam
    Wei, Lise
    BRITISH JOURNAL OF RADIOLOGY, 2023, 96 (1150)
  • [40] Hallmarks of artificial intelligence contributions to precision oncology
    Chang, Tian-Gen
    Park, Seongyong
    Schaeffer, Alejandro A.
    Jiang, Peng
    Ruppin, Eytan
    NATURE CANCER, 2025, 6 (03) : 417 - 431