Artificial intelligence for multimodal data integration in oncology

被引:229
|
作者
Lipkova, Jana [1 ,2 ,3 ,4 ]
Chen, Richard J. [1 ,2 ,3 ,4 ,5 ]
Chen, Bowen [1 ,2 ,8 ]
Lu, Ming Y. [1 ,2 ,3 ,4 ,7 ]
Barbieri, Matteo [1 ]
Shao, Daniel [1 ,2 ,6 ]
Vaidya, Anurag J. [1 ,2 ,6 ]
Chen, Chengkuan [1 ,2 ,3 ,4 ]
Zhuang, Luoting [1 ,3 ]
Williamson, Drew F. K. [1 ,2 ,3 ,4 ]
Shaban, Muhammad [1 ,2 ,3 ,4 ]
Chen, Tiffany Y. [1 ,2 ,3 ,4 ]
Mahmood, Faisal [1 ,2 ,3 ,4 ,9 ]
机构
[1] Harvard Med Sch, Brigham & Womens Hosp, Dept Pathol, Boston, MA 02115 USA
[2] Harvard Med Sch, Massachusetts Gen Hosp, Dept Pathol, Boston, MA 02115 USA
[3] Broad Inst Harvard & MIT, Canc Program, Cambridge, MA 02142 USA
[4] Dana Farber Canc Inst, Data Sci Program, Boston, MA 02215 USA
[5] Harvard Med Sch, Dept Biomed Informat, Boston, MA USA
[6] Harvard Hlth Sci & Technol HST, Cambridge, MA USA
[7] MIT, Dept Elect Engn & Comp Sci, Cambridge, MA USA
[8] Harvard Univ, Dept Comp Sci, Cambridge, MA USA
[9] Harvard Univ, Harvard Data Sci Initiat, Cambridge, MA 02138 USA
基金
美国国家科学基金会;
关键词
BREAST-CANCER; PREDICTION; IMAGES; GLIOBLASTOMA; RADIOMICS; MEDICINE; FEATURES; SUBTYPES; GRADE;
D O I
10.1016/j.ccell.2022.09.012
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
In oncology, the patient state is characterized by a whole spectrum of modalities, ranging from radiology, his-tology, and genomics to electronic health records. Current artificial intelligence (AI) models operate mainly in the realm of a single modality, neglecting the broader clinical context, which inevitably diminishes their po-tential. Integration of different data modalities provides opportunities to increase robustness and accuracy of diagnostic and prognostic models, bringing AI closer to clinical practice. AI models are also capable of discovering novel patterns within and across modalities suitable for explaining differences in patient out-comes or treatment resistance. The insights gleaned from such models can guide exploration studies and contribute to the discovery of novel biomarkers and therapeutic targets. To support these advances, here we present a synopsis of AI methods and strategies for multimodal data fusion and association discovery. We outline approaches for AI interpretability and directions for AI-driven exploration through multimodal data interconnections. We examine challenges in clinical adoption and discuss emerging solutions.
引用
收藏
页码:1095 / 1110
页数:16
相关论文
共 50 条
  • [21] Advancements in Oncology with Artificial Intelligence-A Review Article
    Vobugari, Nikitha
    Raja, Vikranth
    Sethi, Udhav
    Gandhi, Kejal
    Raja, Kishore
    Surani, Salim R.
    CANCERS, 2022, 14 (05)
  • [22] Artificial intelligence and imaging: Opportunities in cardio-oncology
    Madan, Nidhi
    Lucas, Julliette
    Akhter, Nausheen
    Collier, Patrick
    Cheng, Feixiong
    Guha, Avirup
    Zhang, Lili
    Sharma, Abhinav
    Hamid, Abdulaziz
    Ndiokho, Imeh
    Wen, Ethan
    Garster, Noelle C.
    Scherrer-Crosbie, Marielle
    Brown, Sherry -Ann
    AMERICAN HEART JOURNAL PLUS: CARDIOLOGY RESEARCH AND PRACTICE, 2022, 15
  • [23] The Integration of Radiomics and Artificial Intelligence in Modern Medicine
    Maniaci, Antonino
    Lavalle, Salvatore
    Gagliano, Caterina
    Lentini, Mario
    Masiello, Edoardo
    Parisi, Federica
    Iannella, Giannicola
    Cilia, Nicole Dalia
    Salerno, Valerio
    Cusumano, Giacomo
    La Via, Luigi
    LIFE-BASEL, 2024, 14 (10):
  • [24] Transparency and Representation in Clinical Research Utilizing Artificial Intelligence in Oncology: A Scoping Review
    D'Amiano, Anjali J.
    Cheunkarndee, Tia
    Azoba, Chinenye
    Chen, Krista Y.
    Mak, Raymond H.
    Perni, Subha
    CANCER MEDICINE, 2025, 14 (05):
  • [25] Artificial intelligence and multimodal data fusion for smart healthcare: topic modeling and bibliometrics
    Chen, Xieling
    Xie, Haoran
    Tao, Xiaohui
    Wang, Fu Lee
    Leng, Mingming
    Lei, Baiying
    ARTIFICIAL INTELLIGENCE REVIEW, 2024, 57 (04)
  • [26] Artificial intelligence applied to radiation oncology
    Bibault, J. -E.
    Burgun, A.
    Giraud, P.
    CANCER RADIOTHERAPIE, 2017, 21 (03): : 239 - 243
  • [27] Uses and limitations of artificial intelligence for oncology
    Kolla, Likhitha
    Parikh, Ravi B.
    CANCER, 2024, 130 (12) : 2101 - 2107
  • [28] Integration of Artificial Intelligence in Medicines
    Mori, Masaki
    JMA JOURNAL, 2024, 7 (03): : 299 - 300
  • [29] Artificial intelligence for nuclear medicine in oncology
    Kenji Hirata
    Hiroyuki Sugimori
    Noriyuki Fujima
    Takuya Toyonaga
    Kohsuke Kudo
    Annals of Nuclear Medicine, 2022, 36 : 123 - 132
  • [30] Editorial: Artificial intelligence and imaging for oncology
    Zhou, Yuxiang
    Li, Zhimin
    Yadav, Poonam
    FRONTIERS IN ONCOLOGY, 2025, 15