Artificial intelligence for multimodal data integration in oncology

被引:229
|
作者
Lipkova, Jana [1 ,2 ,3 ,4 ]
Chen, Richard J. [1 ,2 ,3 ,4 ,5 ]
Chen, Bowen [1 ,2 ,8 ]
Lu, Ming Y. [1 ,2 ,3 ,4 ,7 ]
Barbieri, Matteo [1 ]
Shao, Daniel [1 ,2 ,6 ]
Vaidya, Anurag J. [1 ,2 ,6 ]
Chen, Chengkuan [1 ,2 ,3 ,4 ]
Zhuang, Luoting [1 ,3 ]
Williamson, Drew F. K. [1 ,2 ,3 ,4 ]
Shaban, Muhammad [1 ,2 ,3 ,4 ]
Chen, Tiffany Y. [1 ,2 ,3 ,4 ]
Mahmood, Faisal [1 ,2 ,3 ,4 ,9 ]
机构
[1] Harvard Med Sch, Brigham & Womens Hosp, Dept Pathol, Boston, MA 02115 USA
[2] Harvard Med Sch, Massachusetts Gen Hosp, Dept Pathol, Boston, MA 02115 USA
[3] Broad Inst Harvard & MIT, Canc Program, Cambridge, MA 02142 USA
[4] Dana Farber Canc Inst, Data Sci Program, Boston, MA 02215 USA
[5] Harvard Med Sch, Dept Biomed Informat, Boston, MA USA
[6] Harvard Hlth Sci & Technol HST, Cambridge, MA USA
[7] MIT, Dept Elect Engn & Comp Sci, Cambridge, MA USA
[8] Harvard Univ, Dept Comp Sci, Cambridge, MA USA
[9] Harvard Univ, Harvard Data Sci Initiat, Cambridge, MA 02138 USA
基金
美国国家科学基金会;
关键词
BREAST-CANCER; PREDICTION; IMAGES; GLIOBLASTOMA; RADIOMICS; MEDICINE; FEATURES; SUBTYPES; GRADE;
D O I
10.1016/j.ccell.2022.09.012
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
In oncology, the patient state is characterized by a whole spectrum of modalities, ranging from radiology, his-tology, and genomics to electronic health records. Current artificial intelligence (AI) models operate mainly in the realm of a single modality, neglecting the broader clinical context, which inevitably diminishes their po-tential. Integration of different data modalities provides opportunities to increase robustness and accuracy of diagnostic and prognostic models, bringing AI closer to clinical practice. AI models are also capable of discovering novel patterns within and across modalities suitable for explaining differences in patient out-comes or treatment resistance. The insights gleaned from such models can guide exploration studies and contribute to the discovery of novel biomarkers and therapeutic targets. To support these advances, here we present a synopsis of AI methods and strategies for multimodal data fusion and association discovery. We outline approaches for AI interpretability and directions for AI-driven exploration through multimodal data interconnections. We examine challenges in clinical adoption and discuss emerging solutions.
引用
收藏
页码:1095 / 1110
页数:16
相关论文
共 50 条
  • [1] Artificial Intelligence in Oncology
    Jeziorski, Krzysztof
    Olszewski, Robert
    APPLIED SCIENCES-BASEL, 2025, 15 (01):
  • [2] Integration of artificial intelligence and precision oncology in Latin America
    Sussman, Liliana
    Garcia-Robledo, Juan Esteban
    Ordonez-Reyes, Camila
    Forero, Yency
    Mosquera, Andres F.
    Ruiz-Patino, Alejandro
    Chamorro, Diego F.
    Cardona, Andres F.
    FRONTIERS IN MEDICAL TECHNOLOGY, 2022, 4
  • [3] Harnessing multimodal data integration to advance precision oncology
    Boehm, Kevin M.
    Khosravi, Pegah
    Vanguri, Rami
    Gao, Jianjiong
    Shah, Sohrab P.
    NATURE REVIEWS CANCER, 2022, 22 (02) : 114 - 126
  • [4] Predicting gene mutation status via artificial intelligence technologies based on multimodal integration (MMI) to advance precision oncology
    Shao, Jun
    Ma, Jiechao
    Zhang, Qin
    Li, Weimin
    Wang, Chengdi
    SEMINARS IN CANCER BIOLOGY, 2023, 91 : 1 - 15
  • [5] Advancing personalized oncology: a systematic review on the integration of artificial intelligence in monitoring neoadjuvant treatment for breast cancer patients
    Hachache, Rachida
    Yahyaouy, Ali
    Riffi, Jamal
    Tairi, Hamid
    Abibou, Soukayna
    El Adoui, Mohammed
    Benjelloun, Mohammed
    BMC CANCER, 2024, 24 (01)
  • [6] Harnessing Artificial Intelligence in Multimodal Omics Data Integration: Paving the Path for the Next Frontier in Precision Medicine
    Nam, Yonghyun
    Kim, Jaesik
    Jung, Sang-Hyuk
    Woerner, Jakob
    Suh, Erica H.
    Lee, Dong-gi
    Shivakumar, Manu
    Lee, Matthew E.
    Kim, Dokyoon
    ANNUAL REVIEW OF BIOMEDICAL DATA SCIENCE, 2024, 7 : 225 - 250
  • [7] Artificial intelligence for nuclear medicine in oncology
    Hirata, Kenji
    Sugimori, Hiroyuki
    Fujima, Noriyuki
    Toyonaga, Takuya
    Kudo, Kohsuke
    ANNALS OF NUCLEAR MEDICINE, 2022, 36 (02) : 123 - 132
  • [8] Artificial intelligence in neuro-oncology
    Nakhate, Vihang
    Gonzalez Castro, L. Nicolas
    FRONTIERS IN NEUROSCIENCE, 2023, 17
  • [9] Artificial intelligence in oncology
    Shimizu, Hideyuki
    Nakayama, Keiichi I.
    CANCER SCIENCE, 2020, 111 (05) : 1452 - 1460
  • [10] Artificial Intelligence, Machine Learning and Big Data in Radiation Oncology
    Zhu, Simeng
    Ma, Sung Jun
    Farag, Alexander
    Huerta, Timothy
    Gamez, Mauricio E.
    Blakaj, Dukagjin M.
    HEMATOLOGY-ONCOLOGY CLINICS OF NORTH AMERICA, 2025, 39 (02) : 453 - 469