Artificial intelligence for multimodal data integration in oncology

被引:302
作者
Lipkova, Jana [1 ,2 ,3 ,4 ]
Chen, Richard J. [1 ,2 ,3 ,4 ,5 ]
Chen, Bowen [1 ,2 ,8 ]
Lu, Ming Y. [1 ,2 ,3 ,4 ,7 ]
Barbieri, Matteo [1 ]
Shao, Daniel [1 ,2 ,6 ]
Vaidya, Anurag J. [1 ,2 ,6 ]
Chen, Chengkuan [1 ,2 ,3 ,4 ]
Zhuang, Luoting [1 ,3 ]
Williamson, Drew F. K. [1 ,2 ,3 ,4 ]
Shaban, Muhammad [1 ,2 ,3 ,4 ]
Chen, Tiffany Y. [1 ,2 ,3 ,4 ]
Mahmood, Faisal [1 ,2 ,3 ,4 ,9 ]
机构
[1] Harvard Med Sch, Brigham & Womens Hosp, Dept Pathol, Boston, MA 02115 USA
[2] Harvard Med Sch, Massachusetts Gen Hosp, Dept Pathol, Boston, MA 02115 USA
[3] Broad Inst Harvard & MIT, Canc Program, Cambridge, MA 02142 USA
[4] Dana Farber Canc Inst, Data Sci Program, Boston, MA 02215 USA
[5] Harvard Med Sch, Dept Biomed Informat, Boston, MA USA
[6] Harvard Hlth Sci & Technol HST, Cambridge, MA USA
[7] MIT, Dept Elect Engn & Comp Sci, Cambridge, MA USA
[8] Harvard Univ, Dept Comp Sci, Cambridge, MA USA
[9] Harvard Univ, Harvard Data Sci Initiat, Cambridge, MA 02138 USA
基金
美国国家科学基金会;
关键词
BREAST-CANCER; PREDICTION; IMAGES; GLIOBLASTOMA; RADIOMICS; MEDICINE; FEATURES; SUBTYPES; GRADE;
D O I
10.1016/j.ccell.2022.09.012
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
In oncology, the patient state is characterized by a whole spectrum of modalities, ranging from radiology, his-tology, and genomics to electronic health records. Current artificial intelligence (AI) models operate mainly in the realm of a single modality, neglecting the broader clinical context, which inevitably diminishes their po-tential. Integration of different data modalities provides opportunities to increase robustness and accuracy of diagnostic and prognostic models, bringing AI closer to clinical practice. AI models are also capable of discovering novel patterns within and across modalities suitable for explaining differences in patient out-comes or treatment resistance. The insights gleaned from such models can guide exploration studies and contribute to the discovery of novel biomarkers and therapeutic targets. To support these advances, here we present a synopsis of AI methods and strategies for multimodal data fusion and association discovery. We outline approaches for AI interpretability and directions for AI-driven exploration through multimodal data interconnections. We examine challenges in clinical adoption and discuss emerging solutions.
引用
收藏
页码:1095 / 1110
页数:16
相关论文
共 140 条
[1]  
Adebayo J, 2018, ADV NEUR IN, V31
[2]  
Ahmedt-Aristizabal D., 2021, Computerized Medical Imaging and Graphics
[3]   An explainable machine learning framework for lung cancer hospital length of stay prediction [J].
Alsinglawi, Belal ;
Alshari, Osama ;
Alorjani, Mohammed ;
Mubin, Omar ;
Alnajjar, Fady ;
Novoa, Mauricio ;
Darwish, Omar .
SCIENTIFIC REPORTS, 2022, 12 (01)
[4]  
Anand Deepak, 2020, J Pathol Inform, V11, P19, DOI 10.4103/jpi.jpi_10_20
[5]   Me-too pharmaceutical products: History, definitions, examples, and relevance to drug shortages and essential medicines lists [J].
Aronson, Jeffrey K. ;
Green, A. Richard .
BRITISH JOURNAL OF CLINICAL PHARMACOLOGY, 2020, 86 (11) :2114-2122
[6]   Colorimetric histology using plasmonically active microscope slides [J].
Balaur, Eugeniu ;
O' Toole, Sandra ;
Spurling, Alex J. ;
Mann, G. Bruce ;
Yeo, Belinda ;
Harvey, Kate ;
Sadatnajafi, Catherine ;
Hanssen, Eric ;
Orian, Jacqueline ;
Nugent, Keith A. ;
Parker, Belinda S. ;
Abbey, Brian .
NATURE, 2021, 598 (7879) :65-+
[7]   Multimodal Machine Learning: A Survey and Taxonomy [J].
Baltrusaitis, Tadas ;
Ahuja, Chaitanya ;
Morency, Louis-Philippe .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2019, 41 (02) :423-443
[8]  
Banerjee I., 2021, arXiv
[9]   Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI [J].
Barredo Arrieta, Alejandro ;
Diaz-Rodriguez, Natalia ;
Del Ser, Javier ;
Bennetot, Adrien ;
Tabik, Siham ;
Barbado, Alberto ;
Garcia, Salvador ;
Gil-Lopez, Sergio ;
Molina, Daniel ;
Benjamins, Richard ;
Chatila, Raja ;
Herrera, Francisco .
INFORMATION FUSION, 2020, 58 :82-115
[10]   Artificial intelligence in digital pathology - new tools for diagnosis and precision oncology [J].
Bera, Kaustav ;
Schalper, Kurt A. ;
Rimm, David L. ;
Velcheti, Vamsidhar ;
Madabhushi, Anant .
NATURE REVIEWS CLINICAL ONCOLOGY, 2019, 16 (11) :703-715