Fe3+-doped SnO2 inverse opal with high structural color saturation

被引:10
作者
Liu, Fangfang [1 ]
Gao, Zhanming [1 ]
Hu, Jin [1 ]
Meng, Yao [1 ]
Zhang, Shufen [1 ]
Tang, Bingtao [1 ,2 ]
机构
[1] Dalian Univ Technol, State Key Lab Fine Chem, Dalian 116024, Peoples R China
[2] Qingdao Univ Sci & Technol, Ecochem Engn Cooperat Innovat Ctr Shandong, Qingdao 266042, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
PHOTONIC CRYSTALS; FABRICATION; FILMS; NANOPARTICLES;
D O I
10.1007/s10853-019-03657-8
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The structural color of inverse opal derived from the interaction between visible light and nanostructure is widely known for the extensive selection of materials, excellent light resistance stability, and environmental friendliness. In contrast to the opal structure, the light scattering in inverse opal is higher and results in milky appearance or even lack of color. In this work, we introduced Fe3+ into the structure of SnO2 inverse opal and successfully obtained an Fe3+-doped SnO2 inverse opal with high color saturation. The direct template method was applied, and the fcc arrangement of template spheres was well kept. Because of the charge transfer transition of Fe3+-O2-, Fe3+ absorbed most of the unwanted scattered light, thereby highlighting the band gap color. Meanwhile, the refractive index of inverse opal increased with the increase in Fe3+ content. It enabled the full spectral coverage in the visible region of the highly saturated structural color only by three particle size templates.
引用
收藏
页码:10609 / 10619
页数:11
相关论文
共 45 条
[1]   Tunable Colors in Opals and Inverse Opal Photonic Crystals [J].
Aguirre, Carlos I. ;
Reguera, Edilso ;
Stein, Andreas .
ADVANCED FUNCTIONAL MATERIALS, 2010, 20 (16) :2565-2578
[2]   Large-Scale Noniridescent Structural Color Printing Enabled by Infiltration-Driven Nonequilibrium Colloidal Assembly [J].
Bai, Ling ;
Mai, Van Cuong ;
Lim, Yun ;
Hou, Shuai ;
Mohwald, Helmuth ;
Duan, Hongwei .
ADVANCED MATERIALS, 2018, 30 (09)
[3]   Invoking forbidden modes in SnO2 nanoparticles using tip enhanced Raman spectroscopy [J].
Bonu, Venkataramana ;
Das, A. ;
Sivadasan, A. K. ;
Tyagi, A. K. ;
Dhara, Sandip .
JOURNAL OF RAMAN SPECTROSCOPY, 2015, 46 (11) :1037-1040
[4]   Structural Color for Additive Manufacturing: 3D-Printed Photonic Crystals from Block Copolymers [J].
Boyle, Bret M. ;
French, Tracy A. ;
Pearson, Ryan M. ;
McCarthy, Blaine G. ;
Miyake, Garret M. .
ACS NANO, 2017, 11 (03) :3052-3058
[5]   Structural Color in Marine Algae [J].
Chandler, Chris J. ;
Wilts, Bodo D. ;
Brodie, Juliet ;
Vignolini, Silvia .
ADVANCED OPTICAL MATERIALS, 2017, 5 (05)
[6]   Recent Advances in Tin Dioxide Materials: Some Developments in Thin Films, Nanowires, and Nanorods [J].
Chen, Zhiwen ;
Pan, Dengyu ;
Li, Zhen ;
Jiao, Zheng ;
Wu, Minghong ;
Shek, Chan-Hung ;
Wu, C. M. Lawrence ;
Lai, Joseph K. L. .
CHEMICAL REVIEWS, 2014, 114 (15) :7442-7486
[7]   Responsive Inverse Opal Hydrogels for the Sensing of Macromolecules [J].
Couturier, Jean-Philippe ;
Suetterlin, Martin ;
Laschewsky, Andre ;
Hettrich, Cornelia ;
Wischerhoff, Erik .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2015, 54 (22) :6641-6644
[8]   Electronic oxide polarizability and optical basicity of simple oxides .1. [J].
Dimitrov, V ;
Sakka, S .
JOURNAL OF APPLIED PHYSICS, 1996, 79 (03) :1736-1740
[9]   Structural Color Patterns by Electrohydrodynamic Jet Printed Photonic Crystals [J].
Ding, Haibo ;
Zhu, Cun ;
Tian, Lei ;
Liu, Cihui ;
Fu, Guangbin ;
Shang, Luoran ;
Gu, Zhongze .
ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (13) :11933-11941
[10]   Recent advances in the biomimicry of structural colours [J].
Dumanli, Ahu Gumrah ;
Savin, Thierry .
CHEMICAL SOCIETY REVIEWS, 2016, 45 (24) :6698-6724