Hybrid inks for 3D printing of tall BaTiO3-based ceramics

被引:9
作者
Gadea, Christophe [1 ]
Spelta, Tarek [2 ,3 ]
Simonsen, Soren Bredmose [1 ]
Esposito, Vincenzo [1 ]
Bowen, Jacob R. [1 ,4 ]
Haugen, Astri Bjornetun [1 ]
机构
[1] Tech Univ Denmark, Dept Energy Convers & Storage, Anker Engelundsvej Bldg 301, DK-2800 Lyngby, Denmark
[2] Politecn Milan, Dept Chem Mat & Chem Engn Giulio Natta, Piazza L da Vinci 32, I-20133 Milan, Italy
[3] Univ Grenoble Alpes, CEA LETI, Minatec Campus, FR-38000 Grenoble, France
[4] Xnovo Technol ApS, Theilgaards Alle 9,1st, DK-4600 Koge, Denmark
来源
OPEN CERAMICS | 2021年 / 6卷
关键词
3D printing; Robocasting; BaTiO3; CO-SUBSTITUTED HYDROXYAPATITE; SILVER-DOPED HYDROXYAPATITE; MESENCHYMAL STEM-CELLS; BIOLOGICAL-PROPERTIES; CARBONATED HYDROXYAPATITE; ANTIBACTERIAL ACTIVITY; SILICON SUBSTITUTION; CHEMICAL-STABILITY; CALCIUM PHOSPHATES; BIO-WASTE;
D O I
10.1016/j.oceram.2021.100110
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Ink formulation is one of the main challenges with ceramic 3D printing. Here, we present a new, reactive-colloidal hybrid ink for 3D printing by robocasting of BaTiO3-based ceramics. The hybrid ink combines a titanium isopropoxide-based sol-gel base with a colloidal dispersion of powder, here demonstrated with BaTiO3 both as the sol-gel (by reaction of titanium isopropoxide and barium oxide) and colloidal (by addition of BaTiO3 powder) parts. Addition of glycerol was necessary to avoid fast precipitation and poor dispersion of BaTiO3 from the reaction of BaO and Ti-isopropoxide. With a solid loading of 40 vol% BaTiO3, 10 mm tall structures could be printed with minimal deformation from slumping. The BaTiO3 shows good piezo-, ferro- and dielectric properties after sintering, with a piezoelectric charge coefficient (d33 = 159 pC/N) in the range commonly reported for BaTiO3. The hybrid inks developed in this work are therefore suitable for robocasting of BaTiO3-based electroceramics.
引用
收藏
页数:8
相关论文
共 152 条
  • [81] Preparation and characterization of selenite substituted hydroxyapatite
    Ma, Jun
    Wang, Yanhua
    Zhou, Lei
    Zhang, Shengmin
    [J]. MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2013, 33 (01): : 440 - 445
  • [82] SOLID-STATE HIGH-RESOLUTION SI-29 CHEMICAL-SHIFTS IN SILICATES
    MAGI, M
    LIPPMAA, E
    SAMOSON, A
    ENGELHARDT, G
    GRIMMER, AR
    [J]. JOURNAL OF PHYSICAL CHEMISTRY, 1984, 88 (08) : 1518 - 1522
  • [83] Accurate characterization of pure silicon-substituted hydroxyapatite powders synthesized by a new precipitation route
    Marchat, David
    Zymelka, Maria
    Coelho, Cristina
    Gremillard, Laurent
    Joly-pottuz, Lucile
    Babonneau, Florence
    Esnouf, Claude
    Chevalier, Jerome
    Bernache-assollant, Didier
    [J]. ACTA BIOMATERIALIA, 2013, 9 (06) : 6992 - 7004
  • [84] Effect of zinc ions on the structural characteristics of hydroxyapatite bioceramics
    Mardziah, C. M.
    Ramesh, S.
    Wahid, M. F. Abdul
    Chandran, Hari
    Sidhu, Amritpal
    Krishnasamy, S.
    Purbolaksono, J.
    [J]. CERAMICS INTERNATIONAL, 2020, 46 (09) : 13945 - 13952
  • [85] Mechanism of Zn stabilization in hydroxyapatite and hydrated (001) surfaces of hydroxyapatite
    Matos, M.
    Terra, J.
    Ellis, D. E.
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2010, 22 (14)
  • [86] Mechanism of incorporation of zinc into hydroxyapatite
    Matsunaga, Katsuyuki
    Murata, Hidenobu
    Mizoguchi, Teruyasu
    Nakahira, Atsushi
    [J]. ACTA BIOMATERIALIA, 2010, 6 (06) : 2289 - 2293
  • [87] Formation Energies of Substitutional Sodium and Potassium in Hydroxyapatite
    Matsunaga, Katsuyuki
    Murata, Hidenobu
    [J]. MATERIALS TRANSACTIONS, 2009, 50 (05) : 1041 - 1045
  • [88] Strontium Substitution in Bioactive Calcium Phosphates: A First-Principles Study
    Matsunaga, Katsuyuki
    Murata, Hidenobu
    [J]. JOURNAL OF PHYSICAL CHEMISTRY B, 2009, 113 (11) : 3584 - 3589
  • [89] First-principles study of substitutional magnesium and zinc in hydroxyapatite and octacalcium phosphate
    Matsunaga, Katsuyuki
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2008, 128 (24)
  • [90] Mavrogenis AF, 2009, J MUSCULOSKEL NEURON, V9, P61