Hybrid inks for 3D printing of tall BaTiO3-based ceramics

被引:8
|
作者
Gadea, Christophe [1 ]
Spelta, Tarek [2 ,3 ]
Simonsen, Soren Bredmose [1 ]
Esposito, Vincenzo [1 ]
Bowen, Jacob R. [1 ,4 ]
Haugen, Astri Bjornetun [1 ]
机构
[1] Tech Univ Denmark, Dept Energy Convers & Storage, Anker Engelundsvej Bldg 301, DK-2800 Lyngby, Denmark
[2] Politecn Milan, Dept Chem Mat & Chem Engn Giulio Natta, Piazza L da Vinci 32, I-20133 Milan, Italy
[3] Univ Grenoble Alpes, CEA LETI, Minatec Campus, FR-38000 Grenoble, France
[4] Xnovo Technol ApS, Theilgaards Alle 9,1st, DK-4600 Koge, Denmark
来源
OPEN CERAMICS | 2021年 / 6卷
关键词
3D printing; Robocasting; BaTiO3; CO-SUBSTITUTED HYDROXYAPATITE; SILVER-DOPED HYDROXYAPATITE; MESENCHYMAL STEM-CELLS; BIOLOGICAL-PROPERTIES; CARBONATED HYDROXYAPATITE; ANTIBACTERIAL ACTIVITY; SILICON SUBSTITUTION; CHEMICAL-STABILITY; CALCIUM PHOSPHATES; BIO-WASTE;
D O I
10.1016/j.oceram.2021.100110
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Ink formulation is one of the main challenges with ceramic 3D printing. Here, we present a new, reactive-colloidal hybrid ink for 3D printing by robocasting of BaTiO3-based ceramics. The hybrid ink combines a titanium isopropoxide-based sol-gel base with a colloidal dispersion of powder, here demonstrated with BaTiO3 both as the sol-gel (by reaction of titanium isopropoxide and barium oxide) and colloidal (by addition of BaTiO3 powder) parts. Addition of glycerol was necessary to avoid fast precipitation and poor dispersion of BaTiO3 from the reaction of BaO and Ti-isopropoxide. With a solid loading of 40 vol% BaTiO3, 10 mm tall structures could be printed with minimal deformation from slumping. The BaTiO3 shows good piezo-, ferro- and dielectric properties after sintering, with a piezoelectric charge coefficient (d33 = 159 pC/N) in the range commonly reported for BaTiO3. The hybrid inks developed in this work are therefore suitable for robocasting of BaTiO3-based electroceramics.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Microwave sintering of BaTiO3-based ceramics
    Derling, S
    Abicht, HP
    JOURNAL OF MICROWAVE POWER AND ELECTROMAGNETIC ENERGY, 1996, 31 (04) : 221 - 227
  • [2] Biocomposite Inks for 3D Printing
    Chinga-Carrasco, Gary
    BIOENGINEERING-BASEL, 2021, 8 (08):
  • [3] Gas sensing characteristics of BaTiO3-based ceramics
    Park, K
    Seo, DJ
    MATERIALS CHEMISTRY AND PHYSICS, 2004, 85 (01) : 47 - 51
  • [4] Microstructure control of BaTiO3-based ceramics by the composition
    Konaka, H
    Sano, H
    Konoike, T
    Tomono, K
    ELECTROCERAMICS IN JAPAN III, 2000, 181-1 : 3 - 6
  • [5] BaTiO3-Based ceramics for tunable microwave applications
    Feteira, A
    Sinclair, DC
    Reaney, IM
    Somiya, Y
    Lanagan, MT
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2004, 87 (06) : 1082 - 1087
  • [6] 3D Printing of BaTiO3 Piezoelectric Ceramics for a Focused Ultrasonic Array
    Cheng, Jian
    Chen, Yan
    Wu, Jun-Wei
    Ji, Xuan-Rong
    Wu, Shang-Hua
    SENSORS, 2019, 19 (19)
  • [7] LCD-SLA 3D printing of BaTiO3 piezoelectric ceramics
    Sotov, Anton
    Kantyukov, Artem
    Popovich, Anatoly
    Sufiiarov, Vadim
    CERAMICS INTERNATIONAL, 2021, 47 (21) : 30358 - 30366
  • [8] Chitosan-based inks for 3D printing and bioprinting
    Taghizadeh, Mohsen
    Taghizadeh, Ali
    Yazdi, Mohsen Khodadadi
    Zarrintaj, Payam
    Stadler, Florian J.
    Ramsey, Joshua D.
    Habibzadeh, Sajjad
    Hosseini Rad, Somayeh
    Naderi, Ghasem
    Saeb, Mohammad Reza
    Mozafari, Masoud
    Schubert, Ulrich S.
    GREEN CHEMISTRY, 2022, 24 (01) : 62 - 101
  • [9] Hot melt inks for 3D printing
    Chovancova, V
    Pekarovicova, A
    Fleming, PD
    DIGITAL FABRICATION 2005, FINAL PROGRAM AND PROCEEDINGS, 2005, : 143 - 147
  • [10] BaTiO3-based ceramics with high energy storage density
    Li, Yang
    Tang, Ming-Yang
    Zhang, Zhong-Gang
    Li, Qi
    Li, Jing-Lei
    Xu, Zhuo
    Liu, Gang
    Li, Fei
    RARE METALS, 2023, 42 (04) : 1261 - 1273